
HaSoTec FG-30...35 V.4.877-1

HaSoTec

Frame Grabber FG-32/ FG-34 PCI
FG-31 ISA/ FG-35 Low-Profile PCI
FG-33 CardBus (32-bit-PCMCIA)

FG-30 PCMCIA

Programming examples
and

Information

Version 4.87

(C) 1993 - 2003 HaSoTec GmbH, all rights reserved

HaSoTec FG-30...35 V.4.877-2

Contents
I. Programmers guide and general remarks

1.1 High-Level Programming under 7-7
Windows XP/ 2000/ NT

1.2 Low-Level Programming under . 7-8
Windows XP/ 2000/ NT

1.3 Low-Level Programming under 7-13
Windows Me/ 98/ 95/ 3.x

1.4 Low-Level Programming under DOS 7-13
1.5 Low-Level Programming under OS/2 7-13

II. 32- Bit- Programming on procedural level using MS-Windows
9x and MS-Windows XP/2000/NT

2.1. Programming under Microsoft Visual C++ 2.0,
 4.0, 4.1, 4.2, 5.0 and 6.0 without OCX Control 7-14

2.2. Programming under Microsoft Visual C++ 6.0,
5.0 and 4.2 with OCX Control 7-15

2.3. Programming under Borland Delphi 6.0
5.0, 4.0, 3.0x and 2.0 without OCX Control 7-16

2.4 Programming under Borland Delphi 2.0 - 6.0
with OCX Control 7-16

2.5 Programming under Borland C-Builder
with OCX Control 7-17

2.6 Programming under Borland C++ 5.01
without OCX Control 7-17

2.7. Programming under Microsoft Visual Basic 6.0,
5.0 with OCX Control 7-17

III. 16-Bit-Programming on procedural level with MS-Windows 3.x
and MS-Windows 9x . 7-19
3.1 Programming in C . 7-19

3.1.1 Microsoft Visual C++ 1.0-1.52 7-20
3.1.2 Microsoft C/C++ 7.0 . 7-20
3.1.3 Borland C++ 3.1, C++ 4.0, C++ 4.5 7-25

HaSoTec FG-30...35 V.4.877-3

3.2 Programming in C++ . 7-26
3.2.1 Microsoft Visual C++ 1.0 ... 1.51 7-26
3.2.2 Microsoft C/C++ 7.0 . 7-26

3.3 Programming in Basic . 7-26
3.3.1 Microsoft Visual Basic . 7-26

3.4 Programming in Pascal . 7-33
3.4.1 Borland Turbo Pascal for Windows 7.0 7-33
3.4.2 Borland Delphi 1.0 . 7-37

IV. Programming on procedural level under DOS 7-43
4.1 Programming in C . 7-43
4.2 Microsoft C/C++ 7.0 . 7-43
4.3 Borland C++ 3.1, 4.0, 4.5 . 7-53
4.4 Programming in Basic . 7-54

4.4.1 Microsoft Quick Basic 4.5 7-54
4.5 Programming in Pascal . 7-56

4.5.1 Borland Pascal 7.0 . 7-56

V. Low-Level Programming . 7-60
5.1 General structure of a device driver call 7-60

5.1.1 Overview: table of driver calls 7-61
5.1.2 Detailed driver call description 7-66

5.2 Using driver calls . 7-107
5.2.1 Microsoft C++ 1.0-1.52 . 7-107
5.2.2 Microsoft C/C++ 7.0 . 7-107
5.2.3 Microsoft C PDS . 7-109
5.2.4 Microsoft Quick C 2.5 . 7-109
5.2.5 Microsoft Quick C for Windows 7-109
5.2.6 Borland C++ 3.1, 4.0, 4.5 7-110

5.3 Microsoft Quick Basic . 7-112
5.4 Microsoft Visual Basic . 7-115
5.5 Microsoft Macro-Assembler 6.0 7-115
5.6 Microsoft Macro-Assembler 5.1 7-115
5.7 Borland Turboassembler . 7-115
5.8 Turbo Pascal for DOS . 7-117
5.9 Turbo Pascal for Windows . 7-117

HaSoTec FG-30...35 V.4.877-4

VI. Low-Level Programming examples 7-118
6.1 Low-Level Programming in C . 7-118
6.1.1. Low-Level Programming in C for WindowsXP/2000/NT . . . 7-119
6.1.2. Low-Level Programming in C for WindowsMe/9x 7-121
6.2 Low-Level Programming in Pascal . 7-123

HaSoTec FG-30...35 V.4.877-5

1. Programmer’s guide and general remarks

This chapter describes programming on procedural level (High-
Level programming) and programming with direct device driver
calls (Low-Level programming).

For High-Level programming with OCX Control please refer to
chapter 9, where common OCX functions are described. For
programming under OS/2 refer to chapter 8 for OS/2-specific
functions.

In 5.1 of this chapter the API 9709 device driver calls for all
operating systems will be shown. Using this interface it is possible
to write program code parts that are independent from operating
systems.
At the same time this API (Application Programmers Interface) is a
standard interface useable for Frame Grabbers FG31... FG35. A
first API 9209 for FG-30 ISA was developed in 1992. This API is
supported for FG30 PCMCIA for all Windows versions up to
Windows Me. API 9709, developed in 1997, contains all functions
of API 9209, but it is based on 32-bit data ports instead of 16-bit.
Ready-to-use applications with their libraries, DLLs and OCX
Controls use the same API. Under DOS, Windows 3.0, Windows
3.1, Windows 3.11, Windows 95, Windows 98 / Me API calls are
made with the help of a Software Interrupt 60H. Parameters are
sent by registers ax, bx, cx and dx. Under Windows NT 3.51,
Windows NT 4.0, Windows NT 5.0, Windows 2000 and Windows
XP, as well as OS/2 Version 2.0 or higher and Linux, a device
driver call has the same parameters, but variables are used
instead of registers. For convenience, these variables have names
that contain ax, bx, cx and dx. This interface is implemented in
some libraries, DLLs and OCX Controls, too. FG30.OCX, for
example, contains a function FG30DRV (this name is the same for
all FG-3x grabbers) to make Low-Level calls. FG30.OCX detects

HaSoTec FG-30...35 V.4.877-6

the operating system that is running and switches to the correct
driver call.

This FG30DRV function is implemented in all OS/2 libraries.

The choice of the VGA driver used under MS-Windows 3.x-9x is
important. For most applications, 32768 or 65536 (15 or 16
bit/pixel) colors make the most sense. This ensures that images
can be displayed in grey scale or color at a reasonable quality
without using complex palette functions. The source code

examples that are supplied are complete
applications which can be easily
expanded. If one of the directly supported
compilers is used, there are both simple
and complex programs that can be
adopted for different purposes. There is
often no need to write your own program
code to grab and display images. Frames
can be captured in all video standards.
Some applications have capturing with
averaging and some have dialog boxes
to manipulate the grabber’s adjustments.
All source code examples come together
with their compiled *.EXE files. This
makes it possible to see how the
examples work even if there is no
compiler installed. It makes sense to
compile the chosen example and to
check for differences that may appear
between compiler versions. Cf. the
screen shot (left): executable files have a
camera symbol. Menu points with other
symbols call compiler environments with
their project files.

HaSoTec FG-30...35 V.4.877-7

We believe that these source code examples will help you start
writing your own programs under Windows quickly.
With just a few Windows API calls, such as GlobalAlloc,
GlobalLock, GlobalUnlock, GlobalFree, SetDIBBitsToDevice and
knowing the structure of BITMAPINFOHEADER and Device
Independent Bitmaps (DIB) new users coming from different
platforms will be able to solve most of their programming
problems.

1.1 High-Level Programming under Windows XP/ 2000/
NT

High- Level Programming examples use OCX- Controls, DLLs,
Object- or LIB- files. These files contain more complex functions
than those of Low-Level examples. Typically, a single function call
grabs an image or opens a complex dialog box. For some of these
files it is important to install the supplied CD under the target
operating system. For example, a DLL for Win98 may not be the
same as the DLL for WinXP. There are internal differences even if
their functionality is the same. The installation program identifies
the operating system and conditionally installs the right
components. Not only for High-Level programs is it important to
call the correct library. It is also important for object files or DLLs to
provide and install the right library for the target system.

Currently all OCX- controls for any given single Frame Grabber
card can be used for all operating systems.
DLLs, libraries and object files are different for the first group of
operating systems (Windows XP/ 2000/ NT) and for the second
group (Windows Me/ 98/ 95). If a file from the second group is
used under Windows XP/ 2000/ NT, a first I/O port access will
result in an exception, which is shown as an OS Error message.

Under Windows XP/ 2000/ NT only 32-bit programs are installed

HaSoTec FG-30...35 V.4.877-8

and supported. To use 16-bit source code or DOS examples,
development must be carried out on a Windows Me/ 98/ 95/3.x
computer.

1.2 Low-Level Programming under Windows XP/ 2000/
NT

Under Windows XP/2000/NT, Linux and OS/2 each driver call to
the Frame Grabber API is made with a fixed set of variables.
These variables (bx, cx, and dx) have the same parameter names
Some helpful tips about using driver calls A Low-Level call to the
Frame Grabber API is made by the following function:

IoctlResult = DeviceIoControl (hdev, // Handle to device
 (ULONG)FKT020, // IO Control code Low-Level
 &freg, // Buffer to driver.
 sizeof (FREG),, // Length of buffer in bytes.
 &freg, // Buffer from driver.
 sizeof (FREG), // Length of buffer in bytes.
 &ReturnedLength, // Bytes placed in DataBuffer
 NULL
);

hdev is returned, when the device driver is opened:

hdev = CreateFile ("\\\\.\\Fg32Dev",
 GENERIC_READ,FILE_SHARE_READ, NULL,

 OPEN_EXISTING, 0, NULL);

You should return this handle to the operating system when the
program is closed using:

Close (hdev)

HaSoTec FG-30...35 V.4.877-9

FREG is a data structure that contains the following components:

typedef struct
{
USHORT fnr; //bx
USHORT cx;
USHORT dx;
PUCHAR reserved;
ULONG reserved2;
} FREG;

typedef FREG * PFREG;

Section 5 describes how to use the variables fnr (bx), cx and dx.
Under Windows XP, 2000 and NT there are additional constraints
that have to be taken into account. Accessing I/O ports directly
from the user program is not allowed. Image data is readable
sequentially from I/O ports. WinMe/9x/3x and DOS Programs can
directly implement functions to read image data, but
WinXP/2000/NT programs need additional data transfer functions
to be implemented in the Device Driver FG32DRV.SYS.
Data transfer functions read the Frame Grabber’s on-board
memory and transfer the data to a pointer of a user-created data
buffer or directly to VGA memory. These functions are shown
below:

FG-3x High-Leve l functions
Pos
.

API Funktion Grabbe
n

Aus-
lesen

Daten X-
Auf-
löösu
ng

Y-
Auf-
löösu
ng

Nor
m

Kopf-
stehen
d

Ave
r-
agin
g

WinNT
FNR:

Grau bits DevIoCt
l

1 FG32IMG160X120X8 grbflg 8 Grey8 160 120 US nein nein IMG001
2 FG32IMG192X144X8 grbflg 8 Grey8 192 144 Eu nein nein IMG002
3 FG32IMG320X240X8 grbflg 8 Grey8 320 240 US nein nein IMG003
4 FG32IMG384X288X8 grbflg 8 Grey8 384 288 Eu nein nein IMG004

HaSoTec FG-30...35 V.4.877-10

5 FG32IMG640X480X8 grbflg 8 Grey8 640 480 US nein nein IMG005
6 FG32IMG768X576X8 grbflg 8 Grey8 768 576 Eu nein nein IMG006

Grau with Averaging
7 FA32IMG160X120X8 ja 8, 16 Grey8 160 120 US nein ja IMG011
8 FA32IMG192X144X8 ja 8, 16 Grey8 192 144 Eu nein ja IMG012
9 FA32IMG320X240X8 ja 8, 16 Grey8 320 240 US nein ja IMG013

10 FA32IMG384X288X8 ja 8, 16 Grey8 384 288 Eu nein ja IMG014
11 FA32IMG640X480X8 ja 8, 16 Grey8 640 480 US nein ja IMG015
12 FA32IMG768X576X8 ja 8, 16 Grey8 768 576 Eu nein ja IMG016

Grau in DIB
13 FG32DIB160X120X8 grbflg 8 bit Grey8 160 120 US ja nein IMG021
14 FG32DIB192X144X8 grbflg 8 bit Grey8 192 144 Eu ja nein IMG022
15 FG32DIB320X240X8 grbflg 8 bit Grey8 320 240 US ja nein IMG023
16 FG32DIB384X288X8 grbflg 8 bit Grey8 384 288 Eu ja nein IMG024
17 FG32DIB640X480X8 grbflg 8 bit Grey8 640 480 US ja nein IMG025
18 FG32DIB768X576X8 grbflg 8 bit Grey8 768 576 Eu ja nein IMG026

Color 24
19 FG32IMG160X120X24 grbflg 24, 48 RGB 160 120 US nein nein IMG031
20 FG32IMG192X144X24 grbflg 24, 48 RGB 192 144 Eu nein nein IMG032
21 FG32IMG320X240X24 grbflg 24, 48 RGB 320 240 US nein nein IMG033
22 FG32IMG384X288X24 grbflg 24, 48 RGB 384 288 Eu nein nein IMG034
23 FA32IMG592X442X24US grbflg 24, 48 RGB 592 442 US nein nein IMG035
24 FA32IMG592X442X24 grbflg 24, 48 RGB 592 442 Eu nein nein IMG036
25 FG32IMG640X480X24 grbflg 24, 48 RGB 640 480 US nein nein IMG037
26 FG32IMG768X576X24 grbflg 24, 48 RGB 768 576 Eu nein nein IMG038

Color Averaging
27 FA32IMG160X120X24 ja 24, 48 RGB 160 120 US nein ja IMG041
28 FA32IMG192X144X24 ja 24, 48 RGB 192 144 Eu nein ja IMG042
29 FA32IMG320X240X24 ja 24, 48 RGB 320 240 US nein ja IMG043
30 FA32IMG384X288X24 ja 24, 48 RGB 384 288 Eu nein ja IMG044
31 FA32IMG592X442X24US ja 24, 48 RGB 592 442 US ja nein IMG045
32 FA32IMG592X442X24 ja 24, 48 RGB 592 442 Eu ja nein IMG046
33 FA32IMG640X480X24 ja 24, 48 RGB 640 480 US nein ja IMG047
34 FA32IMG768X576X24 ja 24, 48 RGB 768 576 Eu nein ja IMG048

Color DIB
35 FG32DIB160X120X24 grbflg 24 bit RGB 160 120 US ja nein IMG051
36 FG32DIB192X144X24 grbflg 24 bit RGB 192 144 Eu ja nein IMG052
37 FG32DIB320X240X24 grbflg 24 bit RGB 320 240 US ja nein IMG053
38 FG32DIB384X288X24 grbflg 24 bit RGB 384 288 Eu ja nein IMG054
39 FG32DIB592X442X24US grbflg 24 bit RGB 592 442 US ja nein IMG055
40 FG32DIB592X442X24 grbflg 24 bit RGB 592 442 Eu ja nein IMG056
41 FG32DIB640X480X24 grbflg 24 bit RGB 640 480 US ja nein IMG057
42 FG32DIB768X576X24 grbflg 24 bit RGB 768 576 Eu ja nein IMG058

Color DIB Online
43 FG32DIB160X120X16IN24 ja, 15 ja RGB 160 120 US ja nein IMG061
44 FG32DIB192X144X16IN24 ja, 15 ja RGB 192 144 Eu ja nein IMG062
45 FG32DIB320X240X16IN24 ja, 15 ja RGB 320 240 US ja nein IMG063
46 FG32DIB384X288X16IN24 ja, 15 ja RGB 384 288 Eu ja nein IMG064
47 FG32DIB592X442X16IN24US ja, 15 ja RGB 592 442 US ja nein IMG065
48 FG32DIB592X442X16IN24 ja, 15 ja RGB 592 442 Eu ja nein IMG066

HaSoTec FG-30...35 V.4.877-11

49 FG32DIB640X480X16IN24 ja, 15 ja RGB 640 480 US ja nein IMG067
50 FG32DIB768X576X16IN24 ja, 15 ja RGB 768 576 Eu ja nein IMG068

Color DIB 15
51 FG32DIB160X120X16 ja, 15 ja 555 160 120 US ja nein IMG071
52 FG32DIB192X144X16 ja, 15 ja 555 192 144 Eu ja nein IMG072
53 FG32DIB320X240X16 ja, 15 ja 555 320 240 US ja nein IMG073
54 FG32DIB384X288X16 ja, 15 ja 555 384 288 Eu ja nein IMG074
55 FG32DIB592X442X16US ja, 15 ja 555 592 442 US ja nein IMG075
56 FG32DIB592X442X16 ja, 15 ja 555 592 442 Eu ja nein IMG076
57 FG32DIB640X480X16 ja, 15 ja 555 640 480 US ja nein IMG077
58 FG32DIB768X576X16 ja, 15 ja 555 768 576 Eu ja nein IMG078

Color 15
59 FG32IMG160X120X16 grbflg 24, 48 555 160 120 US nein nein IMG081
60 FG32IMG192X144X16 grbflg 24, 48 555 192 144 Eu nein nein IMG082
61 FG32IMG320X240X16 grbflg 24, 48 555 320 240 US nein nein IMG083
62 FG32IMG384X288X16 grbflg 24, 48 555 384 288 Eu nein nein IMG084
63 FA32IMG592X442X16US grbflg 24, 48 555 592 442 US nein nein IMG085
64 FA32IMG592X442X16 grbflg 24, 48 555 592 442 Eu nein nein IMG086
65 FG32IMG640X480X16 grbflg 24, 48 555 640 480 US nein nein IMG087
66 FG32IMG768X576X16 grbflg 24, 48 555 768 576 Eu nein nein IMG088

Color 16
67 FG32IMG160X120X16AS565 grbflg 24, 48 565 160 120 US nein nein IMG091
68 FG32IMG192X144X16AS565 grbflg 24, 48 565 192 144 Eu nein nein IMG092
69 FG32IMG320X240X16AS565 grbflg 24, 48 565 320 240 US nein nein IMG093
70 FG32IMG384X288X16AS565 grbflg 24, 48 565 384 288 Eu nein nein IMG094
71 FA32IMG592X442X16AS565US grbflg 24, 48 565 592 442 US nein nein IMG095
72 FA32IMG592X442X16AS565 grbflg 24, 48 565 592 442 Eu nein nein IMG096
73 FG32IMG640X480X16AS565 grbflg 24, 48 565 640 480 US nein nein IMG097
74 FG32IMG768X576X16AS565 grbflg 24, 48 565 768 576 Eu nein nein IMG098
75 FG32IMGXXX nein 32 32 bit dwords - - nein nein FUN009
76 FG32DIBXXX nein 32 32 bit xxx yyy - ja nein FUN008

100 DDRSW08 nein 8 8 dx zcount zoom = 1 FKT090
101 DDRSW15 nein 8 555 dx zcount zoom = 1 FKT091
102 DDRSW16 nein 8 565 dx zcount zoom = 1 FKT092
103 DDRSW24 nein 8 888 dx zcount zoom = 1 FKT093
104 DDRSW32 nein 8 0888 dx zcount zoom = 1 FKT094
105 DDRCO08 nein 16 8 dx zcount zoom = 1 FKT095
106 DDRCO15 nein 16 555 dx zcount zoom = 1 FKT096
107 DDRCO16 nein 16 565 dx zcount zoom = 1 FKT097
108 DDRCO24 nein 16 888 dx zcount zoom = 1 FKT098
109 DDRCO32 nein 16 0888 dx zcount zoom = 1 FKT099
110 DDR2SW08 nein 8 8 dx zcount zoom = 2 FKT100
111 DDR2SW15 nein 8 555 dx zcount zoom = 2 FKT101
112 DDR2SW16 nein 8 565 dx zcount zoom = 2 FKT102
113 DDR2SW24 nein 8 888 dx zcount zoom = 2 FKT103
114 DDR2SW32 nein 8 0888 dx zcount zoom = 2 FKT104
115 DDR2CO08 nein 16 8 dx zcount zoom = 2 FKT105
116 DDR2CO15 nein 16 555 dx zcount zoom = 2 FKT106
117 DDR2CO16 nein 16 565 dx zcount zoom = 2 FKT107
118 DDR2CO24 nein 16 888 dx zcount zoom = 2 FKT108

HaSoTec FG-30...35 V.4.877-12

119 DDR2CO32 nein 16 0888 dx zcount zoom = 2 FKT109
120 DDR4SW08 nein 8 8 dx zcount zoom = 4 FKT110
121 DDR4SW15 nein 8 555 dx zcount zoom = 4 FKT111
122 DDR4SW16 nein 8 565 dx zcount zoom = 4 FKT112
123 DDR4SW24 nein 8 888 dx zcount zoom = 4 FKT113
124 DDR4SW32 nein 8 0888 dx zcount zoom = 4 FKT114
125 DDR4CO08 nein 16 8 dx zcount zoom = 4 FKT115
126 DDR4CO15 nein 16 555 dx zcount zoom = 4 FKT116
127 DDR4CO16 nein 16 565 dx zcount zoom = 4 FKT117
128 DDR4CO24 nein 16 888 dx zcount zoom = 4 FKT118
129 DDR4CO32 nein 16 0888 dx zcount zoom = 4 FKT119

The column WinNT Fnr contains IoCtl codes, which are defined in the header
file FgIoctl.h.

All these functions must be called with a pointer to the following
data structure DIRECTXPARAMS:

typedef struct
{
PBYTE ptr; // Adresse TopLeft
ULONG dx; // Breite in Pixeln
ULONG zcount; // Anzahl der Zeilen
ULONG zoffset; // Zeilenoffset in Bytes
ULONG zlen; // Zeilenlänge in Bytes
ULONG av // average anzahl
ULONG basis; // basisadresse for direct x
ULONG reserved[8]
} DIRECTXPARAMS;

For functions 1-99 it is sufficient to provide a pointer and the base
address of the Frame Grabber card.

Functions 100-129 (DDR stands for Direct Draw) have to be called
twice for interlaced mode images.
Zoffset will be added to zlen, in order to skip every second line.
This is shown in Low-Level source code examples for interlaced
mode formats. Between odd and even fields some blind reads are

HaSoTec FG-30...35 V.4.877-13

required. Based on imode*zlen bytes, these blind reads allow for
both fields to be adjusted to the right place.

There are functions that show 2x and 4x zoomed images. In this
case zlen or 3*zlen must be adjusted to skip the right number of
VGA lines. All these DirectX functions can be used to write directly
into DIBs as well. Zoffset can also be zero or have negative
values.

1.3 Low-Level Programming under Windows Me/ 98/ 95/
3.x/ DOS

1.4 Low-Level Programming under DOS

Under DOS, Windows 3.0, Windows 3.1, Windows 3.11, Windows
95, Windows 98 and Windows Me Low-Level calls are made by
software interrupt 60H using registers ax, bx, cx and dx. In section
5, a detailed description is followed by compiler specific-notes that
explain how to implement Interrupt 60H calls.

1.5 Low-Level Programming under OS/2

Under OS/2 the device driver call is made by a function with the
name DosDevIOCtl, which is similar to the one described above in
section 1.2. Details are given in chapter 8. There you can find
OS/2 source-code examples for Borland C and IBM C/2.
For this operating system only a part of the shown data transfer
functions exist. These functions are described in the programming
examples. Under OS/2 the IOPL level can be switched to IOPL=2.
In this case user programs have direct access to I/O ports.

HaSoTec FG-30...35 V.4.877-14

II.
32-Bit Programming on a Procedural Level with MS-Windows
9x/ Me and MS-Windows XP/ 2000/ NT

2.1 Programming under Microsoft Visual C++ 2.0, 4.0, 4.1, 4.2,
5.0 and 6.0 without OCX Control

Subdirectory \Win9x-NT\MSVC-DLL
contains the following files:

A description of how to use the program is contained in chapter 6.
The file FG32DLL.DLL is required to run the program. There is a
separate dialog and grab function for both color and grey images.
A single dialog shows live display of the video source and has
subdialogs to control nearly all adjustments of the cards. This
example has the same functions as some 16-bit examples.

HaSoTec FG-30...35 V.4.877-15

2.2 Programming under Microsoft Visual C++ 6.0, 5.0 and 4.2
with OCX Control

OCX controls
can be
integrated into
modern
compiler
environments.
Their
functionality is
described in
chapter 9 in
detail. In
Microsoft
Visual C++

there are wizards to implement controls. One can install a
generated and modified example such as the following:

HaSoTec FG-30...35 V.4.877-16

2.3 Programming under Borland Delphi 6.0 5.0, 4.0, 3.00, 3.01,
3.02 and 2.0 without OCX Control

As is the case with other Microsoft DLLs, DLLs made for Visual
C++ and Visual Basic are unfortunately not compatible with Delphi.
Low-Level examples for all formats are provided and can be used
instead.
2.4 Programming under Borland Delphi 2.0 - 6.0 with OCX

Control

Under Delphi
the OCX
controls must
be imported,
so the
compiler
automatically
generates
libraries,
which contain
jump tables
to the
functions of
the control.
Older Delphi
versions may
not be
compatible
with the
current
controls.
You can find
older controls
in

HaSoTec FG-30...35 V.4.877-17

subdirectories and exchange them.

2.5 Programming under Borland C-Builder with OCX Control

The embedding of controls under C++ Builder and Delphi is
practically identical.
No separate source code example is provided in versions before
4.83. Since this compiler can use mixed C and Pascal procedures,
it should be possible to start with the Delphi example.

2.6 Programming under Borland C++ 5.01 without OCX
Control

Microsoft DLLs are not compatible with this compiler. Low-Level C-
Builder examples (Version 4.81 or later) can be used instead.

2.7 Programming under Visual Basic 6.0, 5.0 and 4.0 with
OCX Control

The example is similar to the Microsoft C++ example.

HaSoTec FG-30...35 V.4.877-18

Dialogs are similar in all OCX examples and are shown below:

HaSoTec FG-30...35 V.4.877-19

III.
Programming on a Procedural Level with MS-
Windows 3.x and MS-Windows 9x

In this chapter the term "procedure level" means that ready-to-use
functions implemented in libraries are employed. No knowledge of
device driver functions is required to use them. Functions which
are included in a library are typically often-needed complex
procedures. These functions contain MS-Windows API calls and
Low-Level calls to FG30DRV.EXE.
If library functions are used in an application, this does not exclude
the use of Low-Level functions in other parts of the same program.
Images under MS-Windows follow the standard of Device
Independent Bitmaps (DIB). This small additional programming
effort is efficient, because it enables MS-Windows to display
images on any graphics board.
Several examples are supplied with the resource script files used
by the libraries. In this case the programmer can define which
dialog box elements are shown where, and it is easy to reduce the
number of dialog box elements.

3.1. Programming in C

C is the best choice for writing applications under MS-Windows.
The programming tools supplied with such compilers have the best
quality and the number of sample applications is much higher than
in other compiler products.
Unfortunately, the structure of libraries is not the same among the
various compiler manufacturers. To avoid problems, all examples
contain their own library.

HaSoTec FG-30...35 V.4.877-20

3.1.1 Microsoft Visual C++ 1.0-1.52
3.1.2. Microsoft C/C++ 7.0

The folder WINMSC70 contains the following files::

 Name Original Packed Ratio Date Time Attr CRC
-------------- -------- -------- ------ -------- -------- ---- ----
 FG32IMG.CFG 32 23 76.7% 93-07-01 02:00:00 a--w D04E
 FGIMAGE 512 235 45.9% 93-03-15 01:01:00 a--w 7C06
 FGIMAGE.C 13056 3866 29.6% 93-03-15 01:01:00 a--w 6A64
 FGIMAGE.DEF 256 171 66.8% 93-03-15 01:01:00 a--w B029
 FGIMAGE.DLG 16896 3589 21.2% 93-07-01 02:00:00 a--w 4AA3
 FGIMAGE.EXE 49104 21122 43.0% 93-07-01 02:00:00 a--w 875A
 FGIMAGE.H 4096 1022 25.0% 93-07-01 02:00:00 a--w 9C3F
 FGIMAGE.ICO 766 169 22.1% 93-03-15 01:01:00 a--w 0492
 FGIMAGE.LIB 54303 23318 42.9% 93-07-01 02:00:00 a--w 3E1C
 FGIMAGE.RC 512 220 43.0% 93-03-15 01:01:00 a--w BDFF
 README.TXT 363 232 63.9% 93-07-01 02:00:00 a--w E647
-------------- -------- -------- ------ -------- --------
 11 files 139894 53967 38.6% 93-07-01 02:00:00

Time and date of a file show the version numbers. To make
updates easy, it is recommended that the user change only the
following files:

FGIMAGE.C - source code example
FGIMAGE.DEF - modul definition file
FGIMAGE.ICO - Icon
FGIMAGE.RC - Resource script file
FGIMAGE.EXE - compiled example
FGIMAGE.CFG - configurations file (FG-30)
FGIMAGE. - Make / Nmake file for MS-C

The following files are supplied by HaSoTec with updates:

FGIMAGE.DLG - Resource scripts of dialogs contained in
libraries

FGIMAGE.H - data structures and index
definitions

FGIMAGE.LIB - library

HaSoTec FG-30...35 V.4.877-21

The library FGIMAGE.LIB contains functions which follow the user
documentation of chapter 6 (Ad Oculos). The appearance of
dialog boxes on the screen and the user interface is equivalent to
that of the Ad Oculos driver.

int FAR PASCAL LibMain (hwnd, r0, r1, lpstr)

HWND hwnd - Client Window handle
WORD r0 - reserved = 0
WORD r1 - reserved = 0
LPSTR lpstr - reserved = NULL

LibMain initializes the library and frame grabber by reading a
configuration file. If no configuration data is present, a default data
set is used.

returns - 0 for success

int FAR PASCAL SNAPDLG (hwnd, msg, wpar, lpar)

HWND hwnd - Client Window handle
unsigned msg - Message parameter as is used in any

dialog box procedure
WORD wpar - Word parameter
LONG lpar - Long parameter
returns - 0 for success

SNAPDLG ist a dialog box function for capturing grey-level images.
The image is shown in a dialog box with various control buttons.

The buttons allow you to open 5 additional dialog boxes for making

HaSoTec FG-30...35 V.4.877-22

a variety of adjustments to the FG-3x board.

It is possible to freeze the image, to select averaging 1,2,4,6,16...
and to select a frame rate. This function operates with all graphics
boards under Microsoft Windows, but it is advisable to use a board
with at least 256 colors so as to ensure quality grey-level images.

It is possible to change between 50 Hz and 60 Hz TV standards.
One can select the following image resolutions:

50 Hz 60 Hz
768x576 640x480
384x288 320x240
192x144 160x120

All pixels in all formats and standards are square pixels. Low-Level
functions can be used to select a hardware window based on the
shown resolutions to speed up access times to image segments.

int FAR PASCAL TakeFg32Image (phin, phout, pfgi,
 pfgo, hwnd)

HANDLE FAR * phin
Pointer to an array of handles of input
images (is 0 in this case of not having
any input images)

HANDLE FAR * phout
Pointer to an array of handles of output
images (this array may contain only 1
dimension for this case)

FGINFO FAR * pfgi Pointer to a FGINFO structure (may be
set to 0)

FGINFO FAR * pfgo

HaSoTec FG-30...35 V.4.877-23

Pointer to a FGINFO structure for output
images

HWND hwnd Client window handle.

returns error code or 0

TakeFG32Image can fill image data to a buffer in memory. If an
image was frozen in the dialog box procedure SNAPDLG, the last
frozen image is taken by this function. In all other cases the actual
camera image is taken. All source code examples show how to fill
image data into a device-independent bitmap (DIB).

int FAR PASCAL SNAPDLGRGB (hwnd, msg, wpar, lpar)

HWND hwnd - Client Window handle
unsigned msg - Message parameter as is used in dialog

box procedures
WORD wpar - Word parameter (dialog box procedure)
LONG lpar - Long parameter (dialog box procedure)
returns - 0 for success

SNAPDLGRGB ist a dialog box function for capturing true-color
images. The image is shown in a dialog box with various control
buttons.

The buttons allow you to open 5 additional dialog boxes for making
a variety of adjustments to the FG-3x board.

It is possible to freeze the image and to select averaging
1,2,4,6,16... This function operates with all graphic boards under
Microsoft Windows, but if you use an ET4000 HiColor board with a
driver that supports 32768 colors, this will significantly increase the
speed of the color display. In this case the graphic output is
performed by a special device driver with approximately 8

HaSoTec FG-30...35 V.4.877-24

frames/sec.

The same dialog boxes as in the function SNAPDLG can be
selected with various buttons. The programmer need not worry
about the adjustments in detail. A single function call shows a live
imagine such that all adjustments can be made with the help of
integrated dialogs..

int FAR PASCAL TakeFg30ImageRgb (phin, phout, pfgi,
 pfgo, hwnd)

HANDLE FAR * phin Pointer to an array of handles of input
images

HANDLE FAR * phout Pointer to an array of handles of output
images (this array contains 3
dimensions for each R, G and B part of
the image)

FGINFO FAR * pfgi Pointer to a FGINFO structure
FGINFO FAR * pfgo Pointer to a FGINFO structure for

output images
HWND hwnd Client window handle.

returns error code or 0

TakeFG30ImageRgb works like TakeFG30Image except that
color images are captured instead of grey-level images.

VOID SizeWindow (hwnd)

HWND hwnd Client window handle

SizeWindow optimizes the window size for showing the last

HaSoTec FG-30...35 V.4.877-25

captured image. If an image is larger than a possible window on
the screen, scroll bars are generated automatically. This function
works correctly also for menu bars which need 2 lines of text.

BOOL MakeDialog (lpstr, hwnd, farproc)

LPSTR lpstr Dialog names string
HWND hwndClient window handle
FARPROC farproc Dialog box procedure name
returns true for success

MakeDialog simplifies dialog calls.

HaSoTec FG-30...35 V.4.877-26

3.1.3. Borland C++ 3.1, C++ 4.0, C++ 4.5

The subdirectory WINBRLND contains the following files:
 Name Original Packed Ratio Date Time Attr CRC
-------------- -------- -------- ------ -------- -------- ---- ----
 FG32IMG.CFG 30 25 83.3% 93-07-01 02:00:00 a--w C1C3
 FGIMAGE.C 12935 3875 30.0% 93-03-15 01:01:00 a--w 7FE5
 FGIMAGE.DEF 236 163 69.1% 93-03-15 01:01:00 a--w D760
 FGIMAGE.DLG 16863 3587 21.3% 93-07-01 02:00:00 a--w B00F
 FGIMAGE.DSK 1472 570 38.7% 93-03-15 01:01:00 a--w 6053
 FGIMAGE.H 4522 1288 28.5% 93-07-01 02:00:00 a--w 138E
 FGIMAGE.ICO 766 169 22.1% 93-07-01 01:01:00 a--w 0492
 FGIMAGE.LIB 60416 25954 43.0% 93-07-01 02:00:00 a--w 2900
 FGIMAGE.PRJ 3856 988 25.6% 93-03-15 01:01:00 a--w DF3B
 FGIMAGE.RC 935 424 45.3% 93-03-15 01:01:00 a--w 7350
 README.TXT 363 232 63.9% 93-07-01 02:00:00 a--w E647
 FGIMAGE.EXE 71919 26211 36.4% 93-07-01 02:00:00 a--w EA9B
-------------- -------- -------- ------ -------- --------
 12 files 174313 63486 36.4% 93-07-01 02:00:00

Time and date of a file show the version numbers. To make
updates easy it is recommended that the user change only the
following files:

FGIMAGE.C - source code example
FGIMAGE.DEF - modul definition file
FGIMAGE.ICO - icon
FGIMAGE.RC - resource script file
FGIMAGE.EXE - compiled result
FGIMAGE.CFG - configurations data
FGIMAGE.PRJ - project file
FGIMAGE.DSK - project file

The following files are supplied by HaSoTec with updates:

FGIMAGE.DLG - resource script file for library dialogs
FGIMAGE.H - data structures and index definitions
FGIMAGE.LIB - library
All functions are described in section 3.1.2.

HaSoTec FG-30...35 V.4.877-27

3.2. Programming in C++

3.2.1. Microsoft Visual C++ 1.0 ... 1.52
3.2.2. Microsoft C/C++ 7.0

The WINMSCPP subdirectory contains the following files:

 Name Original Packed Ratio Date Time Attr CRC
-------------- -------- -------- ------ -------- -------- ---- ----
 FG32IMG.CFG 30 23 76.7% 93-07-01 02:00:00 a--w D04E
 FGIMAGE.CPP 6528 2104 32.2% 93-07-01 02:00:00 a--w 7A3E
 FGIMAGE.DEF 256 155 60.5% 93-07-01 02:00:00 a--w FA43
 FGIMAGE.DLG 16896 3589 21.2% 93-07-01 02:00:00 a--w 4156
 FGIMAGE.EXE 71168 32281 45.4% 93-07-01 02:00:00 a--w 997D
 FGIMAGE.H 4608 1205 26.2% 93-07-01 02:00:00 a--w 2171
 FGIMAGE.ICO 766 169 22.1% 93-03-15 01:01:00 a--w 0492
 FGIMAGE.LIB 54303 23318 42.9% 93-07-01 02:00:00 a--w 3E1C
 FGIMAGE.RC 2560 683 26.7% 93-07-01 02:00:00 a--w 795B
 FGIMAGEC.C 7168 2061 28.8% 93-07-01 02:00:00 a--w D1D8
 MAKEFILE 640 289 45.2% 93-07-01 02:00:00 a--w C6EF
-------------- -------- -------- ------ -------- --------
 11 files 164923 65877 39.9% 93-07-01 02:00:00

For the description of all functions please refer to chapter 3.1.2.
The files FGIMAGE.DLG, FGIMAGE.LIB, FGIMAGE.H are subject
to changes in further updates.

3.3. Programming in Basic

3.3.1. Microsoft Visual Basic

The manipulation of image data is not very flexible under Visual
Basic 1.0. The evolution of the programming language Quick Basic
has shown that later versions contain the necessary tools to
manipulate data arrays, so one can expect that future versions of
Visual Basic will add new useful functions.
In Visual Basic 2.0, 3.0 or Visual Basic Professional, some such
functions have already been introduced. The source code example
has been tested with Version 1.0 and should run without
modifications in later versions.

HaSoTec FG-30...35 V.4.877-28

This program is very short because it makes use of the Visual
Basic variable “picture”, which assigns a Bitmap to the client
window. One can thus avoid all programming effort necessary for
realizing a paint structure.
The programming example contains in its corresponding library
FG30VB.DLL functions which give line-by-line access to image
data contained in a Device Independent Bitmap (DIB). Powerful
functions for manipulating data arrays are missing in current
compiler versions. FG30VB.DLL makes at least slow
manipulations of frame data possible. As an example, a function
for inverting a grey-level image is included.

The subdirectory WINMSVB contains the following files:

 Name Original Packed Ratio Date Time Attr CRC
-------------- -------- -------- ------ -------- -------- ---- ----
 FG32IMG.CFG 30 24 80.0% 93-07-01 02:00:00 a--w F27D
 FG32VB.DLL 46720 20486 43.8% 93-07-01 02:00:00 a--w D7EF
 FGIMAGE.BAS 1527 426 27.9% 93-07-01 02:00:00 a--w 1086
 FGIMAGE.EXE 11041 4297 38.9% 93-07-01 02:00:00 a--w 384B
 FGIMAGE.FRM 6747 2479 36.7% 93-07-01 02:00:00 a--w C423
 FGIMAGE.MAK 63 61 96.8% 93-07-01 02:00:00 a--w FD71
-------------- -------- -------- ------ -------- --------
 6 files 66128 27773 42.0% 93-07-01 02:00:00

The functions used under Visual Basic can be described as
follows:

HaSoTec FG-30...35 V.4.877-29

Declare Function SNAPDIALOGS Lib "FG32VB.DLL"
(ByVal hWnd, ByVal i As Integer)

hWnd - property of applications window
i - index of dialog to call

 i=0: calls a dialog box for digitizing grey-level images. A slow
display of the video source with selectable dialog boxes is
available simultaneously. This function works on all graphics
boards, but a board with at least 256 colors is
recommended.

i=1: calls a dialog box function used to digitize true-color
images. A continuous display of the video source is
automatically activated if an ET4000 graphics board is used
in 32,768 color mode. In all other cases only single frames
can be captured.
HiColor resolutions are recommended.

Declare Function TakeFg32Img Lib "FG32VB.DLL"
(hin, hout, lpInfIn As FGINFO, lpInfOut As FGINFO,

ByVal hWnd)

hin points to a handle of an input image and is set to 0 in
this version. Please note that the pointer function is
realized if a ByVal statement is not used.

hout points to a handle of an output image. Its value is
taken from an API call to GlobalAlloc.

lpInfIn points to a type declaration FGINFO for an input
image and is set to 0.

lpInfOut points to a FGINFO type declaration for the output
image.

hWnd is a property of the application window

HaSoTec FG-30...35 V.4.877-30

TakeFG30Image takes either a frozen or an actual grey-level
image, depending on the last dialog-box settings. Image data is
taken into a linear frame buffer.

Declare Function TakeFg32ImgRgb Lib "FG32VB.DLL" (hin,
hout, lpInfIn As FGINFO, lpInfOut As FGINFO, ByVal
hWnd)

hin points to an array containing 3 handles to 3 input
images. In this version this parameter can be set to
0. Please note that the pointer function is reached if
the parameters are placed in the function call without
a ByVal statement.

hout points to an array containing 3 handles for 3 output
images. These values are the result of GlobalAlloc
function calls to the MS-Windows API.

lpInfIn points to a type declaration FGINFO and can be set
to 0.

lpInfOut points to a FGINFO type declaration to produce 3
output images containing red, green and blue image
data.

hWnd is a property of the application window

TakeFG32ImageRgb takes either a frozen or a camera image,
depending on the last settings made by the corresponding dialog
box calls.

Declare Function GetBufLine Lib "FG32VB.DLL" (ByVal pbuf
As Long, ByVal xsize, ByVal y, a As Integer)

pbuf points to a data buffer which can be of any size (no 64K
limit). Such Data buffers can be allocated with a GlobalAlloc
function call to the Windows API. The result of such a call is

HaSoTec FG-30...35 V.4.877-31

the pbuf parameter.
xsize is the number of bytes to be taken from the buffer. In the

case of the source code examples, this is the length of one
line of an image.

y is the cycle number of the transfer (line number)
a is a data array into which the required values are placed.

This array should have at least xsize number of elements.
Each element of this array is used to contain the value of a
single byte of the data buffer.

The first byte of the buffer starts with line number y=0.

Declare Function GetDibLine Lib "FG32VB.DLL" (ByVal pdib
As Long, ByVal y, a As Integer)

pdib points to a DIB of unlimited size (no 64K limit). This
parameter can be produced by a GlobalAlloc/GlobalLock
function call to the Windows API.

y is the line number of the image.
a is a data array of integer values, which has at least as many

elements as pixels are possible per image line. Each
element corresponds to a single byte of an image line.

This function reads a line of an image presented in a Device-
Independent Bitmap (DIB) format. Before this function is called,
the DIB must have a valid BITMAPINFOHEADER.
Please refer also to the MakeColorHeader and MakeGreyHeader
functions.

Declare Function SetDibLine Lib "FG32VB.DLL" (ByVal
pdib As Long, ByVal x, a As Integer)

pdib points to a DIB of any size. This parameter normally is
produced by a GlobalAlloc/GlobalLock function call.

HaSoTec FG-30...35 V.4.877-32

y is the line number of an image.
a points to a data array of integer values. This array is at least

as large as pixels per line can be expected.
This function writes an image line directly into a Device-
Independent Bitmap (DIB).
Before this function is called the DIB must have valid
BITMAPINFOHEADER information as is produced by the functions
MakeColorHeader and MakeGreyHeader.

Declare Function MakeGreyHeader Lib "FG32VB.DLL"
(ByVal pdib As Long, ByVal x, ByVal y)

pdib points to a data buffer to be used as a DIB. Such
data buffers can be allocated by using
GlobalAlloc/GlobalLock function calls to the Windows
API.

x is the number of pixels per line of the required DIB
y is the number of image lines of the required DIB.

This function generates a BITMAPINFOHEADER and a grey-level
palette.

Declare Function MakeColorHeader Lib "FG32VB.DLL"
(ByVal pdib As Long, ByVal x, ByVal y)

pdib points to a DIB. Such data buffers are created with
GlobalAlloc and GlobalLock function calls

x is the number of pixels per line of an image to be
placed in the DIB

y is the number of image lines

This function prepares a BITMAPINFOHEADER as is required by
DIB, which contains true-color image data without palette
information.

HaSoTec FG-30...35 V.4.877-33

Declare Function SizeWindow Lib "FG32VB.DLL" (ByVal
hWnd, ByVal hdib As Integer)

hWnd a property of the main application window.
hdib is a handle to a valid DIB.

This function adjusts the window size to the size of a DIB image.

Declare Function WriteBmpFromDib Lib "FG32VB.DLL"
(ByVal dibptr As Long)

dibptr points to a buffer of a DIB.

This function writes an MS-Windows Bitmap to disk, using the
name FGIMAGE.BMP. Such files can also be used by other
applications such as Paintbrush.

HaSoTec FG-30...35 V.4.877-34

3.4. Programming in Pascal

3.4.1. Borland Turbo Pascal for Windows 7.0

The subdirectory WINPAS70 contains the following files:

 Name Original Packed Ratio Date Time Type CRC
-------------- -------- -------- ------ -------- -------- ----- ----
 FGIMAGE.PAS 8934 2365 26.5% 93-07-01 02:00:00 -lh5- BE7B
 FGTPWLIB.DLL 47296 20755 43.9% 93-07-01 02:00:00 -lh5- FB78
 FGIMAGE.EXE 58900 27768 47.1% 93-07-01 02:00:00 -lh5- C5C3
 FGIMAGE.RES 178 108 60.7% 93-07-01 02:00:00 -lh5- 7361
 FG32IMG.CFG 30 25 83.3% 93-07-01 02:00:00 -lh5- 8F45
-------------- -------- -------- ------ -------- --------
 5 files 115338 51021 44.2% 93-07-01 02:00:00

function SnapDialogs (Window: HWnd; i: Word):Word;far;
 external 'FGTPWLIB' name 'SNAPDIALOGS';

hWnd Handle of applications window
i index to the dialog to be called

 i=0: is a dialog-box function for digitizing grey-level
images. A display of the video source is shown and
access to several dialogs is available.
To display good quality grey-level images, a graphic
board with at least 256 colors is recommended.

i=1: is a dialog box function for digitizing true-color
images. On ET4000 HiColor boards a video source
can be displayed with high frame rates.

function TakeFg32Img (lphin: LPHandle; lphout:
LPHandle; fg: LPFGINFO; fg: LPFGINFO;

Window: HWND):Word;far; external
'FGTPWLIB' name 'TAKEFG32IMG';

lphin points to a handle of an input image. In this version

HaSoTec FG-30...35 V.4.877-35

this function has no input images, so the value can
therefore be set to 0.

lphout points to a handle of an output image. Its value is
returned by a previous GlobalLock call.

pfgi points to an FGINFO data structure and can be set to
0

pfgo points to a FGINFO data structure to describe an
output image.

Window Handle of the applications window

TakeFG30Image provides a frozen or an actual image (depending
on dialog box settings). Data is taken into a linear frame buffer in
memory.

function TakeFg32ImgRgb (lphin: LPHandle;
lphout: LPHandle; fg: LPFGINFO; fg: LPFGINFO;

Window: HWND):Word;far; external
'FGTPWLIB' name 'TAKEFG32IMGRGB';

hin points to a data array containing 3 handles of 3 input
images. Until this information is used in future
versions, this value can be set to 0.

hout points to a data array containing 3 handles for output
images of the red, green and blue parts of the image.
These handles can be allocated using the Windows
API function GlobalAlloc.

lpInfIn points to an FGINFO data structure defined for 3
input images (can be set to 0)

lpInfOut points to a FGINFO data structure defined for 3
output images (red, green and blue)

hWnd Handle of applications window

TakeFG30ImageRgb provides a frozen or actual true-color image
(depending on the last dialog box settings)

HaSoTec FG-30...35 V.4.877-36

Image data are taken into 3 frame buffers for red, green and blue
parts of the image separately.

function MakeGreyHeader (lpdib: LPDIBINFO; x: Word;
y: Word):Word;far; external 'FGTPWLIB'

name 'MAKEGREYHEADER';
lpdib points to a DIB. A DIB buffer can be allocated with

the help of a GlobalAlloc function call to the
MS-Windows API. The function GlobalLock returns
the required pointer.

x shows the number of pixels per line of the DIB image.
y shows the number of lines per frame to be contained

in the DIB.

This function generates a BITMAPINFOHEADER and a grey-scale
palette

function MakeColorHeader (lpdib:LPDIBINFO; x: Word;
y: Word):Word;far; external 'FGTPWLIB'

name 'MAKECOLORHEADER';

lpdib points to a buffer for a DIB. Such buffers can be
allocated with GlobalAlloc/GlobalLock.

x shows the number of pixels per line to be placed into
the DIB

y shows the number of lines of an image to be placed
into the DIB.

This function generates a BITMAPINFOHEADER for a true-color
DIB without a palette.

function PlaceDibBits (buf: PCHAR; dib: PCHAR ;

HaSoTec FG-30...35 V.4.877-37

 x: Word; y: Word):Word;far; external 'FGTPWLIB'
name 'PLACEDIBBITS';

buf pointer to a buffer with linear image data
dib Pointer to a DIB
x number of pixels per line
y number of lines per image

This function copies image data from a linear buffer into a DIB.

function PlaceDibBitsRgb (bufr: PCHAR; bufg: PCHAR;
bufb: PCHAR; dib: PCHAR ; x: Word;

y: Word):Word;far; external 'FGTPWLIB'
 name 'PLACEDIBBITSRGB';

bufr pointer to a buffer with red image data
bufg pointer to a buffer with green image data
bufb pointer to a buffer with blue image data
dib pointer to a DIB
x number of pixels per line
y number of lines per frame

This function copies true-color data from 3 buffers into a DIB.

function SizeWindow (Window: HWND; lpbi:
LPDIBINFO):Word;far; external 'FGTPWLIB'

name 'SIZEWINDOW';

Window handle to applications window
lpbi handle to a valid DIB

This function adjusts the size of the applications window according
to the image size of a DIB.

HaSoTec FG-30...35 V.4.877-38

3.4.2. Borland Delphi 16-Bit

Under Borland Delphi 16-Bit the programmer has a simple tool to
control Frame Grabber FG-30. FG30KOMP has grabbing and
displaying functions implemented. A user interface to a linear
frame buffer is provided to add user-specific functions inside the
object-oriented compiler environment. TFG32Bitmap is an object
that is compatible with the standard Borland object Tbitmap, so all
Borland-provided functions can thus be used with it. The
FG32KOMP component is based on the library FGTPWLIB.DLL
and is the interface to the device driver Fg3xdrv. The executable
files provided are built with Borland Delphi 1.0. Higher versions,
which still have the 16-bit Compiler, can be used as well. This
example cannot be used the 32-bit compiler environment. Please
refer to section 6 of this chapter for OCX control examples or Low-
Level examples.

To install the component, the following steps are required:
1. Import the FG30KOMP component into the palette of

components
2. Install the Help file
3. Install the source code example

Start Installation"setup.exe" from the DINSTALL subdirectory and
follow the steps in the setup. You must remember the chosen
directories so that you can later fill them in manually in the Delphi
environment. Normally all components can be found in the
subdirectory \\Delphi\Lib. It is possible to use different
subdirectories, but components and VCL cannot exceed 128
characters.

To import FG30KOMP, you must start Delphi and use the menu
command "...install component". This opens a dialog box and
"Insert" will ask for a complete path name of the component. You

HaSoTec FG-30...35 V.4.877-39

must switch the dialog box to *.dcu files until FG30KOMP.DCU can
be selected. The compiler links the new file to its internal
structures (COMPLIB) and after this process a component
“FGIMAGE” is selectable.

At this time the library
FGTPWLIB.DLL must
be present in the
component’s directory
or in
\\Windows\System. You must watch for the availability of
FGTPWLIB.DLL during compiler sessions and when running
executable results. It makes sense to have the configuration file
FG30IMG.CFG in the same directory, but if the program does not
find it, it generates a new file with defaults.
To install Help please use the program "HelpInst" supplied by
Delphi. When this program is started, either the file delphi.hdx or
your own specific help file should be selected. It is normally found
in the "\\delphi\Bin" subdirectory. All installed keyword files should
now be displayed. A new file "FG32KOMP.KWF" can be attached,
if “insert keyword file” is selected. Please note that the original help
file (*.hlp) must be accessible for Delphi. Copy the file
fg32komp.hlp to the \\Delphi\Bin subdirectory.

FG32Image is a container which has a drawing surface and an
image data area IMAGE of the type TFG32Bitmap. It is compatible
with the object type TBitmap. FG32IMAGE is not completely
compatible with the TIMAGE component for several reasons, so it
is therefore not safe to use TIMAGE-based functions.

HaSoTec FG-30...35 V.4.877-40

Help functions of the unit:

IncW (p:pointer,
tooadd:word)

helper function to increment pointers not limited
to 64K segment size

Data types of TFG32Image
name range of use description

Imgkinds (NONE,
TRUECOLOR,
GREYSCALE,
PALCOLOR)

shows the type of the image
for the Bitmap component

Badkinds (H300,H308,H310,
H318,H320,H328,
u.s.w. bis H378)

This is a list of possible
resources for the Frame
Grabber card used

Anskinds (red_cinch_connec
tor,
black_white_cinch
connector_Hosiden
_connector)

A list to be declared to switch
betweend frame grabber
inputs

TFG32Bitmap pls refer to
TFG32Bitmap

TBitmap-compatible class for
dealing with bitmap-oriented
images. There are many
useful functions built into
Delphi that can be used in
conjunction with the grabbed
images.

TFG32Filtereve
nt

procedure (Sender:
TObject;Filterindex
:word) of object;

Type of onFilter event

HaSoTec FG-30...35 V.4.877-41

properties of TFG32Image

Name of
property

Type at run
time

description

autosize Boolean The size of the drawing area
should automatically be
adjusted to the image size

stretch Boolean Image display can be
stretched to fit into the current
window size

grabbonly Boolean Grabs frame into the linear
frame buffer without display

backpal Boolean Realizes palette as a
background palette

filterindex Byte If a filter is used, this value
can act as a switch between
filters

FG30Eingang AnsKinds Describes the FG-3x input of
the frame grabber

Fg30Basisad BadKinds Base address of frame
grabber

Image TFG32Bitm
ap

x TBITMAP compatible image
object

ImgTypes ImgKinds x Shows the type of currently
stored frame in image buffer

MulipleFg30 Boolean True, if more than one frame
grabber should be controlled

Methods of TFG32Image

Name Function

Greyimagedialog Shows Dialog for making adjustments to grey-
level images for the frame grabber

HaSoTec FG-30...35 V.4.877-42

Colorimagedialog Shows a dialog for making adjustments to the
frame grabber used to grab color images

Loadbitmap(filename:
String)

Loads a Windows Bitmap from a file. If the
bitmap is in one of the savable formats, it is
taken into the linear frame buffer

GrabbColorImage Grabs and transfers a color frame from frame
grabber

GrabbGreyImage Grabs and transfers a grey frame from frame
grabber

Showabout About Dialogbox

Results of TFG32Image

Name Function

onFilter This event occurs every time grabbed image data are
filled into the structure and are ready to be displayed.
Frames are still not displayed and can be manipulated.
TFG32Filterevent defines a Byte value that can be used
as a filter index. As shown in the example, the hierarchy
of this event is higher than that of the TFG32Image in
order to ensure that the filter is processed first.

Properties of TFG32Bitmap, readable at run time

Name of
property

Type Description

fgstruc array[0..2] of FGRec;
FGRec =
Record res :Word; {Reserved}
breite :Word;
Hoehe:word;
end;

Information structure
to keep information
of the last digitized
image

HaSoTec FG-30...35 V.4.877-43

linbuf Linbuf: array[0..2] of THandle; Linear frame buffer,
starting line-by-line
from top left corner.
The order of each
Pixel is R-G-B
(Bytes 0-1-2.)

size Longint; Determines the size
of a color channel in
Bytes

HaSoTec FG-30...35 V.4.877-44

IV. Programming on the procedural level
under DOS

4.1. Programming in C
4.2. Microsoft C/C++ 7.0

The subdirectory DOSMSC70 contains the following files:

 Name Original Packed Ratio Date Time Attr CRC
-------------- -------- -------- ------ -------- -------- ---- ----
 DOSFG32.CFG 299 40 13.4% 93-07-01 02:00:00 a--w 6530
 DOSMSC70.C 21632 3261 15.1% 93-07-01 02:00:00 a--w 2759
 DOSMSC.EXE 47612 23375 49.1% 93-07-01 02:00:00 a--w AD4E
 DOSMSC70.LIB 18332 7957 43.1% 93-07-01 02:00:00 a--w 88BD
 DOSMSC70.MAK 256 83 32.4% 93-07-01 02:00:00 a--w 61DF
-------------- -------- -------- ------ -------- --------
 5 files 88246 34716 39.3% 93-07-01 02:00:00

The library DOSMSC70.LIB contains the following functions:

void far pascal LIBMAIN (void)

This function initializes the FG-3x library. If the actual directory
contains the file DOSFG3x.CFG the actual settings from this file
are taken to initialize the library. If such a file was not found, the
default values contained in the device driver FG3xDRV are valid.

void far pascal SETUP (void)

A setup menu similar to the program FG3xVGA presents itself.
Use the [arrow keys] to reach an item and the [page up] and [page
down] buttons value to modify the value. With the [Esc]ape key
you leave the menu, and the configuration file DOSFG3x.CFG is
updated to disk.

HaSoTec FG-30...35 V.4.877-45

void far pascal GREY320 (pbuf)

char far * pbuf - pointer to a buffer with 320x240 Bytes

This function is used to digitize a grey-level image with 320x240
pixels in US standard.

void far pascal GREY384 (pbuf)

char far * pbuf - pointer to a buffer with 384x288 Bytes

This function is used to digitize grey-level images with 384x288
Pixels from video sources which operate with 50 Hz-TV standards.

void far pascal GREY640 (pbuf)

char far * pbuf - pointer to a buffer with 640x480 Bytes

This function is used to digitize a grey-level image with 640x480
pixels in US standard.

void far pascal GREY768 (pbuf)

char far * pbuf - pointer to a frame buffer containing
768x576 Bytes

This function is used to digitize grey level images with 768x576
Pixels from video sources which operate with 50 Hz-TV standards.

void far pascal GREY320AV (pbuf, av)

char far * pbuf - pointer to a frame buffer with
320x240x2 Bytes
int av - 2av= number of frames to average

HaSoTec FG-30...35 V.4.877-46

This function is used to capture 320x240 pixel grey-scale images
in US-standard with averaging.

void far pascal GREY384AV (pbuf , av)

char far * pbuf - pointer to a frame buffer with
384x288x2 Bytes
int av - 2av= number of frames to average

This function is used to capture 384x288 pixel grey-scale images
in 50 Hz-standard with averaging.

void far pascal GREY640AV (pbuf, av)

char far * pbuf - pointer to a buffer 640x480 + 65536 Bytes
int av - 2av= number of frames to average

This function is used to digitize grey-scale images with 640x480
pixels from US-standard video sources with averaging. Because
this function would need 640x480x2 Bytes, which are normally not
available under DOS, 640 Kbytes are assigned to a temporary file
on the current drive. This function is slow, but it works without
DOS extenders or EMS drivers.
If XMS or EMS memory is available, it is advisable to rewrite this
function to get higher performance or at least to use a RAM-drive
as the current drive.

void far pascal GREY768AV (pbuf, av)

char far * pbuf - pointer to a frame buffer containing
768x576 + 65536 Bytes
int av - 2av= number of frames to average.

This function is used to digitize grey-scale images with 768x576

HaSoTec FG-30...35 V.4.877-47

pixels from 50 Hz-standard video sources with averaging. Because
this function would need 768x576x2 Bytes, which are normally not
available under DOS, 896 Kbytes are assigned to a temporary file
on the current drive. This function is slow, but it works without
DOS extenders or EMS drivers.
If XMS or EMS memory is available, it is advisable to rewrite this
function to get higher performance or at least to use a RAM-drive
as the current drive.

void far pascal DISPGREY (pbuf, bits, xvga, yvga, ximg,
 yimg, xpos, ypos, xlen, ylen)

char far * pbuf - pointer to image buffer
int bits - Pixel depth of current VGA mode
int xvga - VGA x -resolution
int yvga - VGA y -resolution
int ximg - image data x -resolution
int yimg - image data y -resolution
int xpos - VGA x -position
int ypos - VGA y -position
int xlen - displayed x -resolution
int ylen - displayed y -resolution

This function is used to display grey-level images for test
purposes. 4- und 8-bit modes of VGA boards are supported. The
4-bit-modes use 16 grey levels with resolutions of up to 640x480
pixels. On some SVGA boards this function works without
problems for resolutions of 800x600 pixels. The 8-bit-mode
supports the VGA resolution of 320x200 pixels. VGA boards with
Tseng Labs ET4000 controller and some SVGA boards with
similar memory page switching functions can work at up to
resolutions of 800x600 and 1024x768. The VGA (x, y) position
should be set to (0,0) for working with higher resolutions. In cases
where that the image is larger than the VGA resolution, the image

HaSoTec FG-30...35 V.4.877-48

can be cropped with the help of the parameters xlen, ylen.

int far pascal CHECKTSENG (void)

This function returns 0 if the graphic board is a ET4000 board.

void far pascal SWITCHTSENG (void)

This function switches a Tseng Labs ET4000 board into video
mode 30H. This mode displays 800x600 pixels with 256
colors/grey levels.
Before using this function you should verify that the monitor
connected to the graphic board can operate at this resolution.

void far pascal PALGREY16 (void)

A VGA-palette with 16 grey levels is applied.

void far pascal PALGREY256 (void)

A VGA-palette with 256 grey levels is applied.

void far pascal SETIMODE (imode)

int imode - interlaced mode 0 oder 1

Switches between 2 modes of recognizing even and odd fields in a
video signal. This setup only has an effect at higher FG-30
resolutions.
The correct value should be tested for each video source. It is
correct if the two half frames do not exhibit shifts in every second
line – at least for non-moving objects.

void far pascal COLO320 (pbuf);

HaSoTec FG-30...35 V.4.877-49

char far * pbuf - pointer to an image buffer with
320x240x3 Bytes

This function is used to capture true-color images with resolutions
of 320x240x 24-bit from video sources working in US-TV-standard.

void far pascal COLO384 (pbuf)

char far * pbuf - a pointer to an image buffer with
384x288x3 Bytes
This function is used to capture true-color images with resolutions
of 384x288x 24-bit from video sources working in 50
Hz-TV-standards.

void far pascal COLO640P1 (pbuf)

char far * pbuf - a pointer to an image buffer with
640x120x3 Bytes

This function is used to capture true color images with resolutions
of 640x480x24-bit from video sources working in
US-TV-standards.
Because of the limited memory for DOS applications, an image is
digitized with the full size of 640x480 pixels, but only 1/4 of the
image data is transferred to DOS memory. The other three-
quarters of the image can be transferred with the function
COLO640P2.

void far pascal COLO640P2 (pbuf)

char far * pbuf - pointer to an image buffer with
640x120x3 Bytes

HaSoTec FG-30...35 V.4.877-50

This function transfers with each call the next 120 lines of an
image that has already been captured by COLO640P1. Typically,
a single call to COLO640P1 is followed by 3 calls to this function.

void far pascal COLO768P1 (pbuf)

char far * pbuf - pointer to an image buffer with
768x144x3 Bytes

This function is used to capture true-color frames with 768x576
pixels from video sources with 50 Hz-TV-standards.
Because of the limited memory for DOS applications, an image is
digitized with the full size of 768x576 pixels, but only 1/4 of the
image data is transferred to DOS memory. The other three-
quarters of the image can be transferred with the function
COLO768P2.

void far pascal COLO768P2 (pbuf)

char far * pbuf - pointer to an image buffer with
768x144x3 Bytes
Transfers the remaining three-quarters of a 768x576 image after
using COLO768P1. Normally, a single call to COLO768P1 is
followed by 3 calls to this function.

void far pascal DISPCOLO (pbuf, bits, xvga, yvga, ximg,
 yimg, xpos, ypos, xlen, ylen)

char far * pbuf - pointer to image buffer
int bits - pixel depth of VGA mode
int xvga - VGA x -resolution
int yvga - VGA y -resolution
int ximg - image data x -resolution
int yimg - image data y -resolution

HaSoTec FG-30...35 V.4.877-51

int xpos - VGA x -position
int ypos - VGA y -position
int xlen - displayed x -resolution
int ylen - displayed y -resolution

This function is used for a rough display of color images for test
purposes. 4- und 8-bit modes of VGA boards are supported. The
4-bit-modes use 16 color levels with resolutions of up to 640x480
pixels. On some SVGA boards this function works without
problems for resolutions of 800x600 pixels. The 8-bit-mode
supports the VGA resolution of 320x200 pixels. VGA boards with
Tseng Labs ET4000 controller and some SVGA boards with
similar memory page switching functions can work at resolutions of
up to 800x600 and 1024x768. The VGA (x, y) position should be
set to (0,0) for working at higher resolutions. In cases where the
image is larger than the VGA resolution, the image can be cropped
with the help of the parameters xlen, ylen.
This function is only a rough display for test purposes, since color
images at graphic resolutions with 256 colors and less can only
display high-quality images in conjunction with dithering
procedures and procedures which calculate optimal color palettes
for a given image.
Image data for this function must be 24 bit/pixel. For VGA
resolutions with 16 colors this information is reduced to 2+1+1 bits
für red, green and blue information.
For VGA resolutions with 256 colors, 3+3+2 bits for the red, green
and blue channel are used.

void far pascal PALCOLO16 (void)

For VGA resolutions with 16 colors this function generates a
palette as required by DISPCOLO.

void far pascal PALCOLO256 (void)

HaSoTec FG-30...35 V.4.877-52

This function applies a 3+3+2 bit RGB palette as required by
DISPCOLO.

void far pascal ONLINEGREY (void)

This function realizes a high-speed online display for 256 grey
levels. A special FG-30 mode is used in which the image
resolution is reduced 2:1. On fast computers, one achieves 25
frames/s.
The visible window of 320x200 pixels can be moved over the basic
grid of 384x288 pixels with the arrow keys. The space bar
interrupts this functions, and a high-resolution image can be
frozen, for example.

void far pascal ONLINECOLOR (void)

This function is equivalent to ONLINEGREY except that the image
display is in color. The color resolution is very low because a
special mode with 4 bit luminance information, 2 bits for red color
difference signal and 2 bits for blue color difference signal is
applied. This mode should only be used on simple VGA boards
which cannot show higher color depths. Furthermore, this mode is
only useful for having a fast online display followed by a frozen
image with a higher color depth.

void far pascal ONLINEPAL (r, g, b);

int r
int g
int b

This function realizes a color palette like that used by the function
ONLINECOLOR.
The parameters for red, green and blue show the intensity in % to

HaSoTec FG-30...35 V.4.877-53

the nominal value.

4.3. Borland C++ 3.1, 4.0, 4.5

The subdirectory DOSBLC31 contains the following files:

 Name Original Packed Ratio Date Time Attr CRC
-------------- -------- -------- ------ -------- -------- ---- ----
 DOSBLC.EXE 39824 17899 44.9% 93-07-01 02:00:00 a--w 22A4
 DOSBLC31.C 21395 3397 15.9% 93-07-01 02:00:00 a--w 5342
 DOSBLC31.DSK 581 286 49.2% 93-07-01 02:00:00 a--w 638B
 DOSBLC31.LIB 18447 7957 43.1% 93-07-01 02:00:00 a--w 88BD
 DOSBLC31.PRJ 5208 1136 21.8% 93-07-01 02:00:00 a--w 9809
 DOSFG32.CFG 299 42 14.0% 93-07-01 02:00:00 a--w 3660
-------------- -------- -------- ------ -------- --------
 6 files 85754 30717 35.8% 93-07-01 02:00:00

The functions of the library DOSBLC31.LIB are equivalent to the
functions described in chapter 4.2.
For the demo program, BGI function calls are not used, so as to
keep the source code simple.

HaSoTec FG-30...35 V.4.877-54

4.4. Programming in Basic
4.4.1. Microsoft Quick Basic 4.5

Unfortunately Quick Basic was released with two incompatible
library standards. The older standard is referred to in this
document as the "English" version (DOSQB45E) and the newer
standard as the "German" version (DOSQB45D). You will thus find
two examples for the same Quick Basic application with the
following files:
DOSQB45E:

 Name Original Packed Ratio Date Time Attr CRC
-------------- -------- -------- ------ -------- -------- ---- ----
 DOSFG32.CFG 299 40 13.4% 93-07-01 02:00:00 a--w 6530
 DOSQB45.BAS 20282 3322 16.4% 93-07-01 02:00:00 a--w 5385
 DOSQB45.EXE 25866 11448 44.3% 93-07-01 02:00:00 a--w 6A9D
 DOSQB45E.LIB 18447 8043 43.6% 93-07-01 02:00:00 a--w 2299
 DOSQB45E.QLB 23498 9768 41.6% 93-07-01 02:00:00 a--w 855E
 RUN.BAT 36 36 100.0% 93-07-01 02:00:00 a--w 24BE
-------------- -------- -------- ------ -------- --------
 6 files 88428 32657 36.9% 93-07-01 02:00:00

DOSQB45D:

 Name Original Packed Ratio Date Time Attr CRC
-------------- -------- -------- ------ -------- -------- ---- ----
 DOSFG32.CFG 299 40 13.4% 93-07-01 02:00:00 a--w 6530
 DOSQB45.BAS 20282 3322 16.4% 93-07-01 02:00:00 a--w 5385
 DOSQB45.EXE 66240 39283 59.3% 93-07-01 02:00:00 a--w 5AEB
 RUN.BAT 36 36 100.0% 93-07-01 02:00:00 a--w E87F
 DOSQB45D.QLB 23498 9770 41.6% 93-07-01 02:00:00 a--w 9530
 DOSQB45D.LIB 18447 8043 43.6% 93-07-01 02:00:00 a--w 139A
-------------- -------- -------- ------ -------- --------
 6 files 128802 60494 47.0% 93-07-01 02:00:00

The Basic source file is the same in both versions.
A stand-alone *.EXE file is supplied only in the DOSQB45D
version. The English version requires the Basic run time file
BRUN45.EXE.

You need the libraries DOSQB45x.QLB to work under the Quick
Basic shell. You can call Quick Basic with RUN.BAT, which sets
the required options.

HaSoTec FG-30...35 V.4.877-55

To work with the command-line option of this compiler you need
the libraries: DOSQB45x.LIB. Both the QLB and LIB libraries
contain the same functions.
For the following functions, please refer to the description of the
C-functions with the same name as they are presented in section
4.1:

DECLARE SUB LIBMAIN ()
DECLARE SUB SETUP ()
DECLARE SUB SETIMODE (BYVAL imode AS INTEGER)
DECLARE SUB CHECKTSENG (SEG sm AS INTEGER)
DECLARE SUB SWITCHTSENG ()
DECLARE SUB GREY320 (SEG buf AS INTEGER)
DECLARE SUB GREY384 (SEG buf AS INTEGER)
DECLARE SUB GREY640 (SEG buf AS INTEGER)
DECLARE SUB GREY768 (SEG buf AS INTEGER)
DECLARE SUB GREY320AV (SEG buf AS INTEGER,

BYVAL av AS INTEGER)
DECLARE SUB GREY384AV (SEG buf AS INTEGER,

BYVAL av AS INTEGER)
DECLARE SUB GREY640AV (SEG buf AS INTEGER,

BYVAL av AS INTEGER)
DECLARE SUB GREY768AV (SEG buf AS INTEGER,

BYVAL av AS INTEGER)
DECLARE SUB COLO320 (SEG buf AS INTEGER)
DECLARE SUB COLO384 (SEG buf AS INTEGER)
DECLARE SUB COLO640P1 (SEG buf AS INTEGER)
DECLARE SUB COLO640P2 (SEG buf AS INTEGER)
DECLARE SUB COLO768P1 (SEG buf AS INTEGER)
DECLARE SUB COLO768P2 (SEG buf AS INTEGER)
DECLARE SUB DISPGREY (SEG buf AS INTEGER,

BYVAL bits AS INTEGER, BYVAL xvga AS BINTEGER,BY-
VAL yvga AS INTEGER, BYVAL ximg AS INTEGER,
BYVAL yimg AS INTEGER, BYVAL xpos AS INTEGER,
BYVAL ypos AS INTEGER, BYVAL xlen AS INTEGER,

HaSoTec FG-30...35 V.4.877-56

BYVAL ylen AS INTEGER)

DECLARE SUB DISPCOLO (SEG buf AS INTEGER,
BYVAL bits AS INTEGER, BYVAL xvga AS INTEGER,
BYVAL yvga AS INTEGER, BYVAL ximg AS INTEGER,
BYVAL yimg AS INTEGER, BYVAL xpos AS INTEGER,
BYVAL ypos AS INTEGER, BYVAL xlen AS INTEGER,
BYVAL ylen AS INTEGER)

DECLARE SUB PALGREY16 ()
DECLARE SUB PALGREY256 ()
DECLARE SUB PALCOLO16 ()
DECLARE SUB PALCOLO256 ()
DECLARE SUB ONLINEGREY ()
DECLARE SUB ONLINECOLOR ()
DECLARE SUB ONLINEPAL (BYVAL r AS INTEGER,

BYVAL g AS INTEGER, BYVAL b AS INTEGER)

DECLARE SUB VGATEXT ()

This function switches the VGA board into text mode.

DECLARE SUB VGACGA ()

This function switches the VGA board into 320x200 graphic mode
with 256 colors.

DECLARE SUB VGAVGA ()

This function switches the VGA board into 640x480 graphic mode
with 16 colors.

HaSoTec FG-30...35 V.4.877-57

4.5. Programming in Pascal
4.5.1. Borland Pascal 7.0

The subdirectory DOSPAS70 contains the following files:

 Name Original Packed Ratio Date Time Attr CRC
-------------- -------- -------- ------ -------- -------- ---- ----
 DOSFG32.CFG 299 40 13.4% 93-07-01 02:00:00 a--w 6530
 DOSLIBTP.OBJ 17015 7402 43.5% 93-07-01 02:00:00 a--w 0196
 DOSPAS.EXE 24480 10246 41.9% 93-07-01 02:00:00 a--w A5D4
 DOSPAS.PAS 18757 3124 16.7% 93-07-01 02:00:00 a--w 1C3F
-------------- -------- -------- ------ -------- --------
 4 files 60551 20812 34.4% 93-07-01 02:00:00

The file FG31SVHS contains a modified version for switching FG-
31 to the hosiden connector.

The following procedures are described under the same name in
section 4.1.:

procedure LIBMAIN (x: Integer); far;
procedure SETUP (x: Integer); far;
procedure SETIMODE (imode : Integer);far;
function CHECKTSENG (x: Integer) : Integer; far;
procedure SWITCHTSENG (x: Integer); far;
procedure GREY320 (buf: pointer); far;
procedure GREY384 (buf: pointer); far;
procedure GREY640 (buf: pointer); far;
procedure GREY768 (buf: pointer); far;
procedure GREY320AV (buf: pointer; av: Integer); far;
procedure GREY384AV (buf: pointer; av: Integer); far;
procedure GREY640AV (buf: pointer; av: Integer); far;
procedure GREY768AV (buf: pointer; av: Integer); far;
procedure COLO320 (buf: pointer); far;
procedure COLO384 (buf: pointer); far;
procedure COLO640P1 (buf: pointer); far;
procedure COLO640P2 (buf: pointer); far;

HaSoTec FG-30...35 V.4.877-58

procedure COLO768P1 (buf: pointer); far;
procedure COLO768P2 (buf: pointer); far;
procedure DISPGREY (buf: pointer; bits: Integer;

xvga: Integer; yvga: Integer; ximg: Integer;
yimg: Integer; xpos: Integer; ypos: Integer;
xlen: Integer; ylen: Integer); far;

procedure DISPCOLO (buf: pointer; bits: Integer;
xvga: Integer; yvga: Integer; ximg: Integer;
yimg: Integer; xpos: Integer; ypos: Integer;
xlen: Integer; ylen: Integer); far;

procedure PALGREY16 (x: Integer); far;
procedure PALGREY256 (x: Integer);far;
procedure PALCOLO16 (x: Integer); far;
procedure PALCOLO256 (x: Integer);far;
procedure ONLINEGREY (x: Integer); far;
procedure ONLINECOLOR (x: Integer); far;
procedure ONLINEPAL (r:Integer; g:Integer; b:Integer); far;

The following functions use BIOS Interrupts to switch between
screen modes:

procedure SWITCHVGA (x: Integer);far;
Switches to standard VGA-mode: 640x480 pixels with 16 colors.

procedure SWITCHCGA (x: Integer);far;
Switches to standard VGA-mode: 320x200 pixels with 256 colors.

procedure SWITCHTEXT (x: Integer);far;
Switches the VGA board to text mode.
Unfortunatelyy Turbo Pascal uses its own procedure for text
outputs.
Whenever a graphics mode is selected, Pascal functions such as
WriteLn do not work correctly.

To avoid problems with different screen modes, you find the

HaSoTec FG-30...35 V.4.877-59

following functions, which work in all of the shown screen modes:

procedure VGACLS (x: Integer);far;
Clear screen 640x480

procedure CGACLS (x: Integer);far;

Clear screen 320x200

procedure VGATEXTCLS (x: Integer);far;
Clear screen in text mode.

procedure WriteVgaLn (x: string; attr: Integer);far;
Usable in all screen mode in the same way as the Pascal function
WriteLn is used. The integer variable gives a color attribute for the
string variable.

procedure VgaInteger (y:Integer;x:Integer;num:Integer);far;

Displays the number of n(range 0...999) at screen position (x, y).

HaSoTec FG-30...35 V.4.877-60

V.
Low-Level programming

The term "Low-Level programming" is used in this document to
refer to parts of programs in which functions of the device driver
API are called directly.
For WinMe/98/95/31 and DOS FG3xDRV.EXE is called by a 60H
software interrupt.
For WinMe/98/95/31 and DOS there are no data-transfer functions
in the driver. Data transfer in this case has to be done directly from
an I/O port. Data comes in the form of a sequential data stream.
Under WinXP/2000/NT FG32DRV.SYSis called. It contains data-
transfer functions which are described in section 1.2.

5.1. General structure of a device-driver call

The executable file FG30DRV.EXE installs a device driver to the
software interrupt 60H.
The basic structure of a function call looks as follows in 80x86
assembly language:

mov ax, 9709h ;9209h for FG30
;WinMe/98/95/3.x/Dos

mov bx, funktion
mov cx,parameter1
mov dx,parameter2
int 60h

This fragment of a program can be written in various High-Level
programming languages with other language-specific commands.
To first get a global understanding of the meaning of these
assembly language commands, you find a description below.

Each processor of an IBM PC compatible computer has, among

HaSoTec FG-30...35 V.4.877-61

other registers, the four basic registers AX,BX,CX and DX. Each
register of this kind can operate with 16-bit-numbers. The
command:

mov ax,9709h ;9209h for FG30 WinMe/98/95/3.x/Dos

fills the register AX with the hexadecimal value 9209. This number
is the key to using all the FG30DRV functions. If other drivers use
a different key and follow the Microsoft SDK standard, then
multiple device drivers can share the same software interrupt 60H.
Unfortunately, some network drivers do not follow these rules and
can produce a lot of problems until they are correctly configured
(to use a different software interrupt) or eliminated from the
CONFIG.SYS file.
The register bx is loaded with a number which shows the required
function of the device driver. A function of FG30DRV has up to two
input parameters which can be loaded in the same manner into
registers cx and dx. After a device-driver call the device-driver
function can return up to 2 parameters which are contained in cx
and dx after the call. The call is executed by the assembly
language command

int 60h

Similar commands to get the same effect are described for various
languages starting section 5.2.

To work in other operating systems in the same manner, int 60
calls are replaced by a different device-driver call.
The processor registers are now described in the form of
variables.
Section 1.1.2 describes this driver call for WinXP/2000/NT along
with additional data-transfer commands.

HaSoTec FG-30...35 V.4.877-62

5.1.1. Overview: table of driver calls

The column “OS” shows the operating systems for which the
function is implemented:

N - Windows XP/ 2000/NT and Linux
 O - OS/2

W - Windows Me/ 9x/ 3.xx
D - DOS
H - “History”, function, do not use it for new

developments.

HaSoTec FG-30...35 V.4.877-63

ax=9709h Input Output
bx function OS cx dx cx dx
00 DrvInit NOWD - - 9709 vers
01 DrvPutClientX WO topx lenx - -
02 DrvPutClientY WO topy leny - -
03 DrvGetClientX WO - - topx lenx
04 DrvGetClientY WO - - topy leny
05 DrvSetAdjustment NOWD cl:sat

ch:cont
dl:brig - -

06 DrvGetAdjustment NOWD - - cl:sat
ch:cont

dl:brig

07 DrvSetXRAM NOWD index data - -
08 DrvIniXRAM NOWD - - - -
09 DrvSetBase NOWD basis dwn - -
10 DrvSetXYoffs NOWD xoffs yoffs - -
11 DrvSetGain NOWD gain offset - -
12 DrvGetGain NOWD - - gain offset
13 DrvSwitchGrabber N index type 0-2 base
14 DrvDefineGrabber N typ,index basis present -
15 DrvSetDevCapsXY WO xres yres - -
16 DrvGetExRAM NWD index - data
17 DrvSetExRAM NWD index data - -
18 DrvIniExRAM NWD - - - -
19 DrvPeekExRAM NWD index - - data
20 DrvPokeExRAM NWD index data - -
21 Reserved - - - - -
22 DrvGetPal H - - - -
23 DrvPutPal H offs - - -
24 DrvSetPalGrey H - - - -
25 DrvSetPixBits H bits - - -
26 DrvGetPixBits H - - bits -
27 DrvOnlineRpt H - - status -
28 DrvAcqColDiff H xres yres status -
29 DrvSetColOffs H cxoffs cyoffs - -

HaSoTec FG-30...35 V.4.877-64

ax=9709h Input Output
bx function OS cx dx cx dx
30 DrvGetXRAM NOWD index - - data
31 DrvGetColOffs NOWD - - cxoffs cyoffs
32 DrvAcqColDiff2 H xres yres status - 50Hz
33 DrvAcqColDiff4 H xres/2 yres status - 50Hz
34 DrvSetPalCol8 H R+G Blue - -
35 DrvAcqColDiff60 H xres yres status - 60Hz
36 DrvAcqColDiff260 H xres yres status - 60Hz
37 DrvSwitchInput NOWD input - - -
38 DrvGetSwSet NOWD input - swset -
39 DrvSetSwSet NOWD input swset - -
40 DrvGetInput NOWD - - input -
41 DrvGetBasis NOWD - - basis -
42 DrvGetWaits H - - waits -
43 DrvEingCpy H src dst - -
44 DrvGetCardType NOWD colflag ycflag
45 DrvAcqGreyBig H - - status -
46 DrvAcqGreyBig60 H - - status -
47 DrvAcqGreySmall60 H - - status -
48 DrvUserOutput H bits - - -
49 DrvSetFrameType NOWD frtype - - -
50 FlmSetSize NOWD fxsize fysize - -
51 FlmSetTopLeft NOWD xpos ypos - -
52 FlmSetStatus NOWD xstatus ystatus - -
53 FlmFirstFrame NOWD - - status -
54 FlmNextFrame
55 FlmIniNextFrame
56 FlmWaitNextFrame

NOWD
NOWD
NOWD

 -
 -
 -

 -
 -
 -

status
 -
status

 -
 -
 -

57 FlmGetStatus NOWD mask - status -
58 FlmReadBlind NOWD count basis

offs
 - -

60 FlmAcq NOWD - - - basis
61 FlmWait NOWD - - - basis
62 FlmReRead NOWD - - - basis

HaSoTec FG-30...35 V.4.877-65

ax=9709h Input Output
bx function OS cx dx cx dx
63 RealModeRead D CDwords dx:di - -
64 ReadDword NOWD - - loword hiword

80 DrvVgaDispCga DH - - - -
81 DrvVgaIniXRAM DH - - - -
82 DrvVgaAcq768H DH - - status -
83 DrvVgaAcq768 DH - - status -
84 DrvVgaAcq384 DH - - status -
85 DrvVgaGetOffs DH - - offsx offsy
86 DrvVgaSetOffs DH offsx offsy - -
87 DrvVgaDispCgaColor H - - - -
88 DrvVgaColImages H imagebuf - status -
89 DrvVgaGetDither H - - dflag -
90 DrvVgaSetDither H ditherflag - - -
91 DrvVgaGetShift H - - sixpos siypos
92 DrvVgaSetColPal H - - - -
93 DrvVgaSaveBmp H hwndfile segmen

t
 - -

100 DrvHcDisp H - - status -
101 DrvHcIniXRAM H - - - -
102 DrvHcSetXRAM H segm offs - -
103 DrvHcGetXRAM H segm offs - -
104 DrvHcSetScreenParm H segm offs - -
105 DrvHcGetScreenParm H segm - offs -
106 DrvHcSetOffs H colxoffs colyoffs - -
107 DrvHcGetOffs H - - colxoffs colyoffs
108 DrvHcGetParm123 H - - seg offs
109 DrvHcSetImgType H frtype size - -
110 DrvHcGetImgType H - - frtype size
111 DrvHcDispBig H segment offset status -
112 DrvHcDispSmall H segment offset status -
113 DrvHcRedispBig H segment offset status -

HaSoTec FG-30...35 V.4.877-66

ax=9709h Input Output
bx function OS cx dx cx dx
114 DrvHcSetPosBig H bigshiftx bigshifty status -
115 DrvSetIMode
116 DrvGetIMode

NOWD
NOWD

mode
 -

 -
 -

 -
mode

 -
 -

HaSoTec FG-30...35 V.4.877-67

Function 0
Name of function: DrvInit

input: ax driver signature FG30:9209, FG31...35:9709
(MASM: 9209H Basic &H9209
Pascal: $9209 C: 0x9209)

returns: cx the driver signature should be returned. Any
other value is a sign of an error resulting from
an incorrectly installed driver.
If a driver is not present, the system may hang
up.

dx Driver version * 100

This function should be called directly after an FG-3x application is
started.

Function 1
Name of function: DrvPutClientX

Input: cx X - position of the client window (top left
corner)

dx X - horizontal length of client window
returns: nothing

The driver will be informed about the X position of a client window
under MS-Windows 3.x or OS/2.

Function 2
Name of function: DrvPutClientY

Input: cx Y - position of top left corner
dx Y - length of the client window

returns: nothing

HaSoTec FG-30...35 V.4.877-68

The driver will be informed about the Y position of a client window
under MS-Windows or OS/2.

Function 3
Name of function: DrvGetClientX

Input: nothing
returns: cx X -position of client window

dx X -length of client window

This function reports the last values of the X position of a client
window which have been set to the device driver.

Function 4
Name of function: DrvGetClientY

Input: nothing
returns: cx Y position of client window

dx Y length of client window

This function reports the last values of the Y position of a client
window which have been set to the device driver.

Function 5
Name of function: DrvSetAdjustments

Input: cl=saturation, ch=contrast, dl=brightness
returns: nothing

8-Bit values for adjustments. The range for brightness is 0 to 255,
the range for contrast is 0...127 and for saturation 0....63. Other
values for saturation and contrast may reverse data. It is possible,
for example, to change U and V into YUYV format.

HaSoTec FG-30...35 V.4.877-69

Function 6
Name of function: DrvGetAdjustments

Input: nothing
returns: cl=saturation, ch=contrast, dl=brightness

The range of values returned is as shown in function 5

Function 7
Name of function: DrvSetXRAM

Input: cx XRAM address
dl XRAM data

returns: nothing

This function is used to preset parameters which are used to
decode color or b/w signals. A memory of 200 bits (XRAM) is used
for each of the video inputs.
The address of a bit is calculated as:

position of a bit in <dl> + 8 * <cx>

The changes are made on a byte by byte basis.
The following figure of a dialog box shows the elements with their
corresponding bit positions in the XRAM.

HaSoTec FG-30...35 V.4.877-70

HaSoTec FG-30...35 V.4.877-71

Function 8
Name of function: DrvIniXRAM

Input: nothing
returns: nothing

This function activates all changes made to the XRAM (e.g. with
function 7) of the actual video input.

Function 9
Name of function: DrvSetBasis

Input: cx base address of FG-30
dx dwn

returns: nothing

This function sets the base address of FG-3x. If more than one
board is used in a computer, a base address switch can be used
to switch between FG-3x boards. Under Windows XP/2000/NT the
value of dwn is used. If dwn=1, a shorter initialization is used so as
to ensure short switching times between cards. For dwn=0, a
download procedure is made for FG-30-I, FG31 and FG-32. It is
advisable to run this function at least one time with dwn=0 at the
start of each program.

Function 10
Name of function: DrvSetXYoffs

Input: cx X - offset of image position
dx Y - offset of image position

returns: nothing

This function allows you to adjust the position of a frame.

HaSoTec FG-30...35 V.4.877-72

The offset values are related to the horizontal and vertical sync
pulses. To acquire frames correctly, you must be certain that the
number of lines and pixels per line used by the hardware window
really exist in the video signal. If, for example, a full frame is
captured, the number of y-offset must be smaller than the
difference between the number of lines of the video signal and the
number of lines captured. For this reason it is useful to use small
offset values to test unknown video sources the first time (cx=80,
dx=5). After capturing stable images, the offset value can be
increased in small steps until the image position is correct.
As long as the described conditions are guaranteed, the offset
values for smaller parts of the image can address a top left corner
placed inside the image grid. The supplied standard software does
not make use of image parts (with the exception of the 592x442
resolution in FG3xCLIP and ET4HICOL).

Function 11
Name of function: DrvSetGain

Input: cx gain
dx offset

returns: nothing

The range of values is 0...255. The gain value is only active when
gain control is switched to manual mode (use functions 30, 7, 8 to
change the gain control mode).

Function 12
Name of function: DrvGetGain

Input: nothing
returns: cx gain

dx offset
The range of values is 0...255.

HaSoTec FG-30...35 V.4.877-73

Function 13
Name of function: DrvSwitchGrabber

Input: cx index [0..7]
returns: cx typ (0=FG30,1=FG31,2=FG32,

3=FG33, 4=FG34)
dx baseaddr

Under Windows XP/ 2000/ NT this function allows for fast
switching between different boards. There is a driver internal table
for 8 cards, which can be changed with function 14

card index type Basisadresse
 1 0 FG-32 300H
 2 1 FG-30 310H
 3 2 FG-31 318H
 4 3 FG-32 700H
 5 4 FG-33 0000H: no card present or p&p basis
 6 5 FG-33 0000H: no card present or p&p basis
 7 6 FG-34/35 0000H: no card present or p&p basis
 8 7 FG-34/35 0000H: no card present or p&p basis

If you wish to maintain compatibility to older software, then this
function must not be used. DrvSetBasis (function 9) switches to
the right card if 300H,310H,318H or 700H is sent as the base
address. If the plug & play (p&p) addresses of the new cards are
known, this kind of switching works for cards 5...8 as well. There is
an additional mechanism implemented: if function 9 switches to
300H, for example, and if there is no FG-32 on address 300H, the
next existing plug & play card (card 5...8) is activated. This makes
it possible to write programs for a single FG32...35, so that the first
installed card can be addressed with a single function-9-call.

Function 14
Name of function: DrvDefineGrabber

HaSoTec FG-30...35 V.4.877-74

input: cl typ (0=FG30,1=FG31,2=FG32
3=FG33, 4=FG34)

ch index [0...7]
dx baseaddr

returns: cx present
With this function, the list of cards can be changed. This function is
only required if the predefined cards in function 13 are not
sufficient. This is the case if more than 2x FG33,34,35 are used or
if more than one FG-31 is used.
Before using this function you must switch to a different card
index. If the selected card index is changed by this function,
unexpected results may occur.

Function 15
Name of function: DrvSetDevCapsXY

Input: cx x resolution of actual video mode
dx y resolution of actual video mode

returns: nothing

This device driver has functions for using these values to support
ET4000 boards. Under MS-Windows the X resolution must be
chosen carefully, because some 256-color device drivers with
800x600 organize the frame buffer with 1024 pixels per line.

Function 16
Name of function: DrvGetExRAM

Input: cx index (0...255) and 0ffffh
returns: dx data
Reads back video parameters to be modified with function 17.
Offset 0ffffh is a special mode for this function. It updates all
values from the current hardware status in a drivers buffer. This 8-
bit-buffer can be read with offsets from 0 to 255.

HaSoTec FG-30...35 V.4.877-75

Function 17
Name of function: DrvSetExRAM

Input: cx index (0...255)
dx data

returns: nothing

All important video parameters can be manipulated with function 7
DrvSetXRAM, function 8 DrvIniXRAM and function 30
DrvGetXRAM.
The frame grabbers FG-30-II, FG-33, FG-33-II, FG-34 and FG-35
have additional video parameters. They can be manipulated with
FG3xCLIP version 4.86 or later. Using Crtl-F8, a dialog opens with
multiple pages to manipulate all ExRAM parameters. This works
simultaneously with the quick online display (F5).
In contrast to the XRAM functions, ExRAM is not stored for each
video input. If you wish to manipulate any of these parameters,
you can get the hardware status by means of function 16 with
offset 0ffffh and then read the required values. The aim of function
17 is to write back these values to the buffer. The modified values
must be activated with function 18.

Function 18
Name of function: DrvIniExRAM

Input: nothing
returns: nothing

This function activates the value set by function 17.

Function 19
Name of function: DrvPeekExRAM

HaSoTec FG-30...35 V.4.877-76

Input: cx index
returns: dx data

This function reads a single ExRAM Byte directly from the
hardware, bypassing the buffer of function 16.

Function 20
Name of function: DrvPokeExRAM

Input: cx index
dx data

returns: nothing

This function writes a single ExRAM Byte directly to the hardware,
in order to achieve the effect of the change immediately.

Function 22
Name of function: DrvGetPal

Input: nothing
returns: nothing

Stores the current system palette. This function requires palette
registers which correspond to the VGA standard.

Function 23
Name of function: DrvPutPal

Input: cx offset=0
returns: nothing

Replaces the system palette which was saved with function 22.

Function 24

HaSoTec FG-30...35 V.4.877-77

Name of function: DrvSetPalGrey

Input: nothing
returns: nothing

This function applies a VGA palette with 256 grey levels.

Function 25
Name of function: DrvSetPixBits

Input: cx number of bits per pixel
returns: nothing

This function reports the color depth to the device driver. On this
basis the device driver can run different routines for online
displays. A pixel depth of 8 or 16 bits is supported.

Function 26
Name of function: DrvGetPixBits

Input: nothing
returns: cx number of bits per pixel
This function returns the last value which was set by function 25.

Function 27
Name of function: DrvOnlineRpt

Input: nothing
returns: cx 0=successful grabbed

This function repeats the last online display at maximal speed. The
function saves time because it avoids all initializations which are
no longer necessary after a first frame has been digitized. Under
Windows this function can be included in a timer-controlled loop to

HaSoTec FG-30...35 V.4.877-78

update the image periodically.

Function 28 no longer present in versions V.4.1 or higher
Function name: DrvAcqColDiff

Input: cx x - resolution
dx y - resolution

returns: cx 0= grabbed successfully

This function should not be used for new developments.
Functions 50, 51, 52, 57, 53 should be used instead:

field even odd interl. 2x16 bit
function/register 50cx 50dx 51cx 51dx 52cx 52dx 57 53 pixels are
592x442 YUV 50Hz 296 221 0 0 72e9h 2 yes yes 2 YUYV
768x288 YUV 50Hz 384 288 0 0 72b9h 72c9h 2 - yes 2 YUYV
384x288 YUV 50Hz 384 288 0 0 72b9h 72c9h 2 - yes 1 YUYV

Up to Version 4.1:
This captures a frame in color-difference mode. After calling this
function two16-bit words should be read blind to initialize the
pipeline.
After this step, image data can then be read as a sequential data
stream of YUV data. Every second byte represents luminance
information. The rest of the information is chrominance data. The
information sequence is YUYV... This sequence is known as the
4:2:2 video standard.
U is defined as a byte of green-red difference and V is defined as
a byte with blue-green information.

Function 29 no longer present in versions V.4.1 or higher
Function name: DrvSetColOffset

Input: cx X - offset

HaSoTec FG-30...35 V.4.877-79

dx Y - offset
returns: nothing

For all functions that digitize color images, separate values for the
image offset are set in versions 1.X. Starting with FG3xDRV
Version 2.00 it is advisable to use only function 10.

Function 30
Function name: DrvGetXRAM

Input: cx XRAM address
dl XRAM data

returns: nothing

This function is used to get parameters which are used for
decoding color or b/w signals. A memory of 200 bits (XRAM) is
used for each of the video inputs.
The address of a bit is calculated as:

position of a bit in <dl> + 8 * <cx>

To modify a bit of the XRAM data, the byte containing the bit
should be read with this function. The next step modifies the bit(s)
as required and function 7 can be used to write back the data.

Function 31
Name of function: DrvGetColOffs
Input: nothing
returns: cx x - offset

dx y - offset

This function returns the default offset values as set by function
10.

HaSoTec FG-30...35 V.4.877-80

Function 32 no longer present in versions V.4.1 or higher
Name of function: DrvAcqColDiff2

Input: cx x - resolution
dx y - resolution

returns: cx 0=successful grabbed

This function should not be used for new developments.
Functions 50, 51, 52, 57, 53 should be used instead:

field even odd interl. 2x16 bit
function/register 50cx 50dx 51cx 51dx 52cx 52dx 57 53 pixels are
592x442 YUV 50Hz 296 221 0 0 72e9h 2 yes yes 2 YUYV
768x288 YUV 50Hz 384 288 0 0 72b9h 72c9h 2 - yes 2 YUYV
384x288 YUV 50Hz 384 288 0 0 72b9h 72c9h 2 - yes 1 YUYV

Up to Version 4.1:
This function is similar to function 28, the only difference being that
the field detection unit is turned off. The next field appearing in the
video signal is thus digitized.

Function 33 no longer present in versions V.4.1 or higher
Name of function: DrvAcqColDif4

Input: cx x - resolution /2
dx y - resolution

returns: cx 0=successful grabbed

This function should not be used for new developments.
Functions 50, 51, 52, 57, 53 should be used instead:

field even odd interl. 2x16 bit
function/register 50cx 50dx 51cx 51dx 52cx 52dx 57 53 pixels are
592x442 YUV 50Hz 296 221 0 0 72e9h 2 yes yes 2 YUYV
768x288 YUV 50Hz 384 288 0 0 72b9h 72c9h 2 - yes 2 YUYV
384x288 YUV 50Hz 384 288 0 0 72b9h 72c9h 2 - yes 1 YUYV

HaSoTec FG-30...35 V.4.877-81

Function 34
Name of function: DrvSetPalCol8

Input: cl red
ch green
dl blue

returns: nothing

This function sets a color palette as required by the 8-bit-color
mode. The red, green and blue values show intensity values
between 0...255.

Function 35 no longer present in versions V.4.1 or higher
Name of function: DrvAcqColDif60

Input: cx x - resolution /2
dx y - resolution

returns: cx 0=successful grabbed

This function should not be used for new developments.
Functions 50, 51, 52, 57, 53 should be used instead:

field even odd interl. 2x16 bit
function/register 50cx 50dx 51cx 51dx 52cx 52dx 57 53 pixels are
592x442 YUV 60Hz 296 221 -20 -4 72e9h 2 ja ja 2 YUYV
640x240 YUV 60Hz 320 240 -20 -4 72b9h 72c9h 2 - ja 2 YUYV
320x240 YUV 60Hz 320 240 -20 -4 72b0h 72c0h 2 - ja 1 YUYV

Up to Version 4.1:
Similar to function 28 for 60Hz TV standards.

Function 36 no longer present in versions V.4.1 or higher
Name of function: DrvAcqColDif260

HaSoTec FG-30...35 V.4.877-82

Input: cx x - resolution
dx y - resolution

returns: cx 0=successful grabbed

This function should not be used for new developments.
Functions 50, 51, 52, 57, 53 should be used instead:

field even odd interl. 2x16 bit
function/register 50cx 50dx 51cx 51dx 52cx 52dx 57 53 pixels are
592x442 YUV 60Hz 296 221 -20 -4 72e9h 2 ja ja 2 YUYV
640x240 YUV 60Hz 320 240 -20 -4 72b9h 72c9h 2 - ja 2 YUYV
320x240 YUV 60Hz 320 240 -20 -4 72b0h 72c0h 2 - ja 1 YUYV

Up to Version 4.1:
Similar to function 32 for 60Hz TV standards.

Function 37
Name of function: DrvSwitchInput

Input: cx video input to be activated
returns: nothing

This function can select one of the video inputs. The
corresponding XRAM page is also activated.

Function 38
Name of function: DrvGetSwSet

Input: cx input
returns: cx swset

This function determines for a video input the status of VCR
operation (bit 1 of swset). There is no need to switch to the
requested input to get the swset information.

HaSoTec FG-30...35 V.4.877-83

Function 39
Name of function: DrvSetSwSet

Input: cx input
dx swset

returns: nothing

This function can set the VCR flag for each video input.
The VCR flag is bit 1 of swset, the S-Video flag is only valid for
FG30ISA and is shown with bit 0 of swset. The value 0 for a bit
position turns its function off.

Function 40
Name of function: DrvGetInput

Input: nothing
returns: cx input

This function returns the number of the currently selected video
input (0...8).
Cx=0 is the first composite video input. Cx=2,3,5,6,8 are further
composite video inputs. cx=1,4 oder 7 are S-Video inputs. If a S-
Video input is used cx=n (e.g. 4), the two neighboring inputs n-1
and n+1 (3 and 5) are used – and cannot be used for composite
signals at the same time. In other words: 2 composite inputs
together can be used as one S-Video input.

HaSoTec FG-30...35 V.4.877-84

Function 41
Name of function: DrvGetBasis

Input: nothing
returns: cx base address

This function returns the actual base address used by the currently
selected FG-3x board.

Function 42
Name of function: DrvGetWaits

Input: nothing
returns: cx wait states (0 or 1)

This function returns the number of wait states which was defined
last by device driver calls. If no value was set, the function returns
the default value 1 .

Function 43 no longer present in versions V.4.1 or higher
Name of function: DrvEingCpy

Input: cx source (0...2)
dx destination (0..2)

returns: nothing

This function copies the XRAM data block from the source input to
the XRAM location of the destination input.

Function 44
Name of function: DrvGetCardType

Input: nothing
returns: cx colflag

HaSoTec FG-30...35 V.4.877-85

dx ycflag

This function shows with colflag that the board can work in color
formats. The value of ycflag shows that the card can work with Y/C
signals. All standard products FG30-I, FG30-II and FG31...35
return colflag=1 and ycflag=1 for yes..

Function 45 no longer present in versions V.4.1 or higher
Name of function: DrvAcqGreyBig60

Input: nothing
returns: cx 0=successful grabbed

This function should not be used for new developments.
Functions 50, 51, 52, 57, 53 should be used instead.

Up to Version 4.1:
This function digitizes grey-level images with 640x480 pixel
resolution. After using this function, two words should be read
blind to initialize the pipeline. Now the image data can be read in
sequential order. Each 16-bit-word contains 2 8-bit-pixels. The first
640x240 pixels contain the odd field, the next 640x240 pixel
contain the even field of the frame.

Function 47 no longer present in versions V.4.1 or higher
Name of function: DrvAcqGreySmall60

Input: nothing
returns: cx 0=successful grabbed

This function should not be used for new developments.
Functions 50, 51, 52, 57, 53 should be used instead:
Up to Version 4.1:
Digitizes grey-level information with a resolution of 640x240 pixels.

HaSoTec FG-30...35 V.4.877-86

After reading two words to initialize the pipeline, the user has
access to a 16-bit-sequential data stream. This function can be
used to read a 320x240 image, if every second pixel is ignored.
This is a 2:1 reduced image containing the area of a 640x480
basic grid. This function is intended for use with US-TV-standard
sources.

Function 48
Name of function: DrvUserOutput

Input: cx bits
returns: -

sets the user-defined output bits. The default value of these bits is
high (1).

Function 49
Name of function: DrvSetFrameType

Input: cx frame type
returns: nothing

sets the frame type: 1=odd field, 2=even field 3=next field.

Function 50
Name of function: DrvFlmSetSize

Input: cx x - size of film image
dx y - size of film image

returns: nothing

Sets the frame size for film sequences. This function only has an
influence for functions 50...99.

HaSoTec FG-30...35 V.4.877-87

The following table shows examples for interlaced and non-
interlaced images and rectangular image parts.
The table a complete list of the formats used in FG3xCLIP
(chapter 3):

field even odd interl. 2x16 bit
function/register 50cx 50dx 51cx 51dx 52cx 52dx 57 53 pixels are
768x576 YUV 50Hz 384 288 0 0 72e9h 2 ja ja 2 YUYV
592x442 YUV 50Hz 296 221 0 0 72e9h 2 ja ja 2 YUYV
768x288 YUV 50Hz 384 288 0 0 72b9h 72c9h 2 - ja 2 YUYV
384x288 YUV 50Hz 384 288 0 0 72b9h 72c9h 2 - ja 1 YUYV
768x576 555 50Hz 384 288 0 0 72ebh 2 ja ja 2 2x555
384x288 555 50Hz 384 288 0 0 723fh 725fh 2 - ja 2 2x555
768x576 565 50Hz 384 288 0 0 727bh 2 ja ja 2 2x565
384x288 565 50Hz 384 288 0 0 72bbh 72cbh 2 - ja 2 2x565
768x576 Grau 50Hz 384 288 0 0 72e0h 2 ja ja 4 YYYY
768x288 Grau 50Hz 384 288 0 0 72b0h 72c0h 2 - ja 4 YYYY
384x288 Grau 50Hz 384 288 0 0 72b2h 72c2h 2 - ja 4 YYYY

field even odd interl. 2x16 bit
function/register 50cx 50dx 51cx 51dx 52cx 52dx 57 53 pixels are
640x480 YUV 60Hz 320 240 -20 -4 72e9h 2 ja ja 2 YUYV
592x442 YUV 60Hz 296 221 -20 -4 72e9h 2 ja ja 2 YUYV
640x240 YUV 60Hz 320 240 -20 -4 72b9h 72c9h 2 - ja 2 YUYV
320x240 YUV 60Hz 320 240 -20 -4 723fh 725fh 2 - ja 1 YUYV
640x480 555 50Hz 320 240 -20 -4 72ebh 2 ja ja 2 2x555
320x240 555 50Hz 320 240 -20 -4 72bbh 72cbh 2 - ja 2 2x555
640x480 565 50Hz 320 240 -20 -4 727bh 2 ja ja 2 2x565
320x240 565 50Hz 320 240 -20 -4 72bbh 72cbh 2 - ja 2 2x565
640x480 Grau 60Hz 320 240 -20 -4 72e0h 2 ja ja 4 YYYY
640x240 Grau 60Hz 320 240 -20 -4 72b0h 72c0h 2 - ja 4 YYYY
320x240 Grau 60Hz 320 240 -20 -4 72b2h 72c2h 2 - ja 4 YYYY

FG-30-II, FG-33, FG-34, FG-35 have all listed formats. FG-30-I,
FG-31, FG32 have no interlaced RGB and no 565 RGB format.

Function 51
Name of function: DrvFlmSetTopLeft

Input: cx x - position

HaSoTec FG-30...35 V.4.877-88

dx y - position of top left corner
returns: nothing

Sets the top-left corner inside the later selected basic grid
(768x576 or 640x480 or 384x288 or 320x240). This function only
has an effect for functions 50...99.

For US-standards the values should be fixed to cx=-20 and dx=-4.
Image adjustments should be made with function 10.

Function 52
Name of function: DrvFlmSetStatus

Input: cx x - status word
dx y - status word

returns: nothing

Sets the format for grabbing. These status words select between
grey/YUV/RGB modes with 8/16 bits/pixels.
The x-status-word may have the following values.

Field: odd even next
8 - bit - grey 1:2 72B2 72C2 72E2
8 - bit - grey 1:1 72B0 72C0 72E0
8 - bit - color 1:2 7232 7252 7272 only FG30ISA
8 - bit - color 1:1 7230 7250 7270 only FG30ISA
5+6+5-bit color 1:2 72BF 72CF 72EFnot for FG31,32
5+6+5-bit color 1:1 723F 725F 727F not for FG31,32
5+5+5-bit color 1:2 72BB 72CB 72EB
5+5+5-bit color 1:1 723B 725B 727B not for FG30ISA
YUV 1:1 72B9 72C9 72E9

Please note that resolutions grey 1:1, YUV 1:1 and 5+5+5 color
1:1 normally work in interlaced mode. The image comes in form of
two fields sequentially. The sequential data transfer is possible

HaSoTec FG-30...35 V.4.877-89

from the I/O port of the base address of the card.

Ystatus shows the number of fields to be scanned by the grabber.
It is possible to grab the next field that comes when ystatus =1. In
all other cases, ystatus=2 because in the next two fields the
grabber will find exactly one odd and one even field.

Function 53
Name of function: DrvFlmFirstFrame
Input: nothing
returns: cx 0=successful grabbed

Digitizes a first frame as defined with functions 50...52. This
function can be used for 8-bit-grey-level, 8-bit-color, 16-bit-YUV
and 16-bit-RGB images. Image data can be read sequentially from
the following addresses:
16-bit-access (only FG-30 and possible FG-31)
grey level: base address 2 Pixel/ word
color 8-bit: base address 2 Pixel/ word
color YUV: base address YU, YV/every other time
color RGB: base address (+2 for FG30ISA) RGB/ Word
32-bit-access (FG-31... FG-35)
grey level: base address 4 Pixel / 32-bit-word
color YUV: base address YUYV / 32-bit- word
color RGB: base address 2 RGB-16-bit-Pixels / 32-bit-word

If images are grabbed in interlaced mode, both fields come in the
order of their appearance in the digital data stream. To handle
odd and even frames correctly, two possibilities exist:

Method 1:
Wait for each frame, start grabbing, knowing that the next field will
be odd:

 m1: mov ax,9709h

HaSoTec FG-30...35 V.4.877-90

mov bx,57
int 60h

 and cx,2000h
jnz m1

To maintain compatibility with FG30ISA the bitmask 0010h can be
used instead of 2000h.

Method 2:
Start grabbing immediately when the first field comes. The type will
be detected so that it is handled as odd or even.

Function 54
Name of function: DrvFlmNextFrame

Input: nothing
returns: cx 0=successful grabbed

dx base address

Digitizes frames in the same format as function 53. This function
works after a first frame has been digitized with function 53 and is
faster because it avoids initializing steps needed only once.

Function 55
Name of function: DrvFlmIniNextFrame

Input: nothing
returns: nothing

This function performs the first step as in function 54. It does not
wait for image data but returns immediately to allow software to
use the time instead of waiting. Function 56 is the second part
required to complete grabbing.

HaSoTec FG-30...35 V.4.877-91

Function 56
Name of function: DrvFlmWaitNextFrame

Input: nothing
returns: cx 0=successful grabbed

dx base address

The grabbing process has already been started, so image data
may already be present. The function waits until image data is
present and prepares data for sequential reading.

Function 57
Name of function: DrvFlmGetStatus

input: cx -
returns: cx status

The returned status value contains information in some bits as
described below.

Bit mask Status information
2000H: ODD shows the current field present in the

video signal
1000H: RDY2=0 shows that the second field is ready
0400H: RDY=0 the first field is ready

FG-32 and FG-34
0100H User Input Pin 7 on Sub-D-Plug FG32 and

FG-34
FG-30-II and FG-33
these I/O Bits have no pull-up resistors and can be used as I/O
bits using the cx register. To use them as TTL-inputs, the
corresponding outputs must be set to 1 (-> function 48).

HaSoTec FG-30...35 V.4.877-92

0008H User I/O of Pin 12, 15-pole-front-connector
0004H User I/O von Pin 11, 15-pole-front-connector

Function 58 Version 4.10 or later
Name of function: DrvFlmBlindRead

input: cx count
dx offset to base address

returns: nothing

This function can be used to do blind reads from I/O ports.
For FG30 16-bit-I/O-reads and for FG31...35 32-bit-I/O-reads are
used.

Function 60 Version 4.10 or later
Name of function: DrvFlmAcq

input: nothing
output: cx

dx base address

This function starts acquisition.

Function 61 Version 4.10 or later
Name of function: DrvFlmWait

input: nothing
output: cx

dx base address

This function waits until image data is readable.

Function 62 Version 4.10 or later
Name of function: DrvFlmReRead

HaSoTec FG-30...35 V.4.877-93

input: nothing
output: cx

dx base address

This function starts reading. It is possible to repeat reading after
this function has been used.

HaSoTec FG-30...35 V.4.877-94

Function 63
Name of function: RealModeRead

input: cx DWORD count
dx:di target pointer

returns: nothing

This function transfers up to 16384 Dwords into a real mode 64K
segment.

Function 64
Name of function: ReadDword
input: nothing
Returns: cx- low word, dx- high word

Function 68 only FG-35
Name of function: DrvSetExternalPort

Input: cl 8-Bit-data word
dx offset

Returns: nothing

Set external data to port extender. Offset is in the range of 0...7 for
one of 8 ports.

Function 69 only FG-35
Name of function: DrvGetExternalPort

Input: dx offset
Returns: cl 8-Bit-data word

HaSoTec FG-30...35 V.4.877-95

A function for reading external serial ports.
Offset is in the range of 0...7 for one of 8 ports.

HaSoTec FG-30...35 V.4.877-96

Function 80
Name of function: DrvVgaDispCga

Input: nothing
Returns: nothing

Digitizes and displays grey-level images in VGA mode 13H.
The image size is reduced 2:1 and to 320x200 pixels. The visible
region can be moved on the 384x288 basic grid with the help of
arrow keys.

Funktion 81
Name of function: DrvVgaIniXRAM

Input: nothing
Returns: nothing

In versions later than 1.x this function is equivalent to function 7.

Function 82
Name of function: DrvVgaAcq768HalbVga

Input: nothing
Returns: cx 0= success

Digitizes grey-level images with 768x288 pixels.

Function 83
Name of function: DrvVgaAcq768

Input: nothing
Returns: cx 0= success

Digitizes grey-level images with 768x576 pixels.

HaSoTec FG-30...35 V.4.877-97

Function 84
Name of function: DrvVgaAcq384

Input: nothing
Returns: cx 0= success

Digitizes grey-level images with 384x288 pixels.

Function 85
Name of function: DrvVgaGetOffs

Input: nothing
Returns: cx x - Offset

dx y - Offset

Returns offset values placed to the driver with function 86.

Function 86
Name of function: DrvVgaSetOffs

Input: cx x - Offset
dx y - Offset

Returns: nothing

This function is replaced with function 10 in all versions of the
software later than 2.00.

Function 87
Name of function: DrvVgaDispCgaColor

Input: nothing
Returns: nothing

Produces a color display using standard VGA mode 13H. Because

HaSoTec FG-30...35 V.4.877-98

of the limited color capabilities and because FG-30 works only in
8-bit-color mode, this function can only be used for a preliminary
display of the video source. When the image is frozen by the
space bar, a function with a higher color resolution should be used
to provide the requested image. During online display a 320x200
fraction of the basic grid of 384x288 can be moved by arrow keys.
The color information during online display consists of 4-bit Y, 2-bit
U and 2-bit V information.

Function 88
Name of function: DrvVgaColImages

Input: cx Segment
Returns: cx 0= success

This function can only be used in real or virtual 386 mode
of the CPU. Starting with a segment address in cx, a continuous
memory area of 256 KBytes should be provided.
This function contains the following operations:

1. digitize a true color 384x288 x 24 bit RGB frame.
2. 288 x reading a line of the image to address:

(segment+3000H):0000
3. 288 x color reduction of a single line to 8 bit/pixel, place

results starting at: (segment+0000H):0000H
4. 288 x color reduction of a single line to 4 bit/pixel, place

results starting at: (segment+2000H):0000H

Function 89
Name of function: DrvVgaGetDither

Input: nothing
Returns: cx 0 - no dithering, 1-dithering

HaSoTec FG-30...35 V.4.877-99

Gets the dithering status for function 88.

Function 90
Name of function: DrvVgaSetDither

Input: cx 0 - no dithering, 1 -dithering
Returns: nothing

Sets the dithering status for function 88.

Function 91
Name of function: DrvVgaGetShift

Input: nothing
Returns: cx x - position

dx y - position

Returns the last position of online display functions in VGA 13H
mode. This position can be adjusted with the arrow keys. When
replacing a frozen image with color reduction into VGA mode 13H
this function shows the top-left corner of the fragment to be shown

Function 92
Name of function: DrvVgaSetColPal

Input: nothing
Returns: nothing

Generates and realizes a palette like the one requested directly
after using function 88.

Function 93
Name of function: DrvVgaSaveBmp

HaSoTec FG-30...35 V.4.877-100

Input: cx file handle
dx Segment address

Returns: nothing

Helper function to save true color images with 384x288 pixels
under DOS. This function is useful for DOS programs which do not
have 324 KByte available to first capture and later to store an
image into a *.BMP file.
This function assumes that an image was grabbed with function
88. After this operation the true-color image data is still in the
memory of the FG-30 board. Image data access is now given line
by line in the reverse order as requested by the *.BMP format.
The input value "segment address" points to a memory location
with a temporary buffer of 1152 Bytes. It is assumed that a file with
its file handle in cx is already opened and a valid
BITMAPFILEHEADER and a BITMAPINFOHEADER is already
saved. The file should be closed after using this function.

Function 100
Name of function: DrvHcDisp

Input: nothing
returns: cx 0= grabbed successfully

Online display of 384x288 pixels for a ET4000 graphics board
working in HiColor mode with 800x600 pixels resolution.

Function 101
Name of function: DrvHcIniXRAM

Input: nothing
returns: nothing

HaSoTec FG-30...35 V.4.877-101

Since version 1.01, this function is equivalent to Function 7.

Function 102
Name of function: DrvHcSetXRAM

Input: cx segment
dx offset

returns: nothing

The XRAM page address which corresponds to the selected input
is provided in cx:dx.

Function 103
Name of function: DrvHcGetXRAM

Input: cx segment
dx offset

returns: nothing

The current XRAM page is copied to memory location cx:dx. The
length of the copied information is 200 bits.

Function 104
Name of function: DrvHcSetScreenParm

Input: cx segment
dx offset

returns: nothing

Updates color values for fonts and dialogs as required by the
program ET4HICOL.EXE.

Function 105
Name of function: DrvHcGetScreenParm

HaSoTec FG-30...35 V.4.877-102

Input: cx segment
dx offset

returns: nothing

Reads color values for fonts and dialogs as required by the
program ET4HICOL.EXE.

Function 106
Name of function: DrvHcSetOffs

Input: cx x - offset
dx y - offset

returns: nothing

This function can be replaced by a function call to function 10.

Function 107
Name of function: DrvHcGetOffs

Input: nothing
returns: cx x - offset

dx y - offset

returns offsets set by function 106.

Function 108
Name of function: DrvHcGetParm123
Input: nothing
returns: cx segment

dx offset

XRAM data for all three inputs is provided for modification at real
mode addresses cx:dx.

HaSoTec FG-30...35 V.4.877-103

Function 109
Name of function: DrvHcSetImgType

Input: cx type of image
dx size

returns: nothing

Defines the type of image for ET4HICOL.EXE type=0: reserved,
type=1: odd frame, type=2: even frame, type=3: next field
whatever appears first. Defines the image size as used in
ET4HICOL size=0: 384x288 size=1: 592x442 interlaced mode 0
and size=2: 592x442 interlaced mode 1.

Function 110
Name of function: DrvHcGetImgType

Input: nothing
returns: cx type of image

dx size
Returns the last settings made with function 109.

Function 111
Name of function: DrvHcDispBig

Input: cx segment
dx offset

returns: cx 0=successful grabbed

Digitize and display an 592x442 image in ET4000 HiColor Mode
with a resolution of 800x600.
24-bit-RGB data is captured, where the last 3 bits of each color are
placed starting at address cx:dx. These values have to be stored
to save true-color images which can then be combined with
information which appears on screen.

HaSoTec FG-30...35 V.4.877-104

Function 112
Name of function: DrvHcDispSmall

Input: cx segment
dx offset

returns: cx 0= grabbed successfully

Digitizes and displays in ET4000 HiColor 800x600 mode an
384x288 image. At the same time, the 24-bit image data is stored
at cx:dx

Function 113
Name of function: DrvHcRedispBig

Input: cx segment
dx offset

returns: nothing

Repaints an 592x442 true-color image from data which is still
available in the FG-30 frame buffer. As in function 111, the last 3
bits of each color channel are placed to location cx:dx.

Function 114
Name of function: DrvHcSetPosBig

Input: cx x offset
dx y offset

returns: nothing

The relative screen position of a true-color image with the size
592x442 as produced by function 111 is defined by this function.

Function 115

HaSoTec FG-30...35 V.4.877-105

Name of function: DrvHcInterlacedMode

Input: cx mode
returns: nothing

This function can change the interlaced mode value. Depending
upon which grabber is in use, the default value is either 2 or 3. A
range from 1...5 is allowed.

Function 116
Name of function: DrvGetIMode

Input: nothing
Returns: cx Mode

Returns the interlaced mode value as set by function 115.

HaSoTec FG-30...35 V.4.877-106

HaSoTec FG-30...35 V.4.877-107 HaSoTec FG-30...35 V.4.877-108

5.2. Using driver calls

5.2.1. Microsoft Visual C++ 1.0... 1.52
5.2.2. Microsoft C/C++ 7.0

One way to realize a driver request is to use an inline assembler.
Inline assemblers are provided with many C-compilers.
Under MS-Windows 3.0, 3.1 or 3.11 the DPMI interface is used.
To open this interface in Win3.x the lines printed in red type below
are required. For Win95 and later, the red lines are not required.

void DrvInit()
{
 _asm{

 mov ax, 0200h ;get real mode interrupt vector
 mov bl, 60h ;requested interrupt
 int 31h ;DPMI call
 or cx, dx ;error ?
 jz short nodpmi
 mov ax, 9709h ;signature FG3x, use 9209 for FG-30
 mov bx,0 ; initialize FG30DRV
 int 60h
 cmp bx, 9709h ;bx = 9709 means success
 jz dpmiok
 mov installed, -1 ;
dpmiok:
}
}

Installed is a C-variable with type int. Before the call is made it
can be initialized, e.g. with 0. The value of -1 shows the following
procedures that the driver was not successful initialized.

HaSoTec FG-30...35 V.4.877-109

For WinMe/98/95 and DOS it suffices to initialize the card this way:

_asm {
mov bx,0
mov ax,9709h
int 60h
}

It is absolutely necessary that FG3xDRV.EXE be called from
autoexec.bat at system startup. This call can be performed without
the frame grabber being installed.

Image data comes in the form of sequential data streams.
UsingFG-31...35 they come from the first 32-Bit-I/O-Port and using
FG-30 they come from the first 16-Bit-I/O-Port address. To read
16-bit-I/O ports, most compilers have the inpw- function. If a
compiler has no 32-bit I/O read command and no 32-bit-inline
assembler a driver function can be used instead:

void ReadBuffer (pbuffer, maxbuffer, basis)
DWORD far * pbuffer;
int maxbuffer, basis;
{
for (i=0;i<maxbuffer;i++) *pbuffer++ = inp_dword (basis);
}
DWORD inp_dword (basis)
int basis;
{
int hi;
int lo;
_asm {

mov ax,9709h
mov bx,64
int 60h

HaSoTec FG-30...35 V.4.877-110

mov hi,dx
mov lo,cx
}

return ((DWORD)hi<<16+(DWORD)lo);
}

The following C 6.0 example can be used as well.

5.2.3. Microsoft C PDS/6.0
5.2.4. Microsoft Quick C 2.5
5.2.5. Microsoft Quick C for Windows

#include <dos.h>

union REGS inreg,outreg;

int DrvInit ()
{
inreg.x.ax = 0x9709; /* API */
inreg.x.bx = 0; /* function 0 */
int86 (0x60, &inreg, & outreg);
if (outreg.x.cx+outreg.x.bx != 0)
return 1;
else
return 0;
}

Read sequential 32-bit data:

void ReadBuffer (pbuffer, maxbuffer, basis)
int far * pbuffer;
int maxbuffer, basis;
{
for (i=0;i<maxbuffer;i++)

HaSoTec FG-30...35 V.4.877-111

{
inreg.x.ax=0x9709;
inreg.x.bx=64;
int86 (0x60, &inreg, &outreg;
*pbuffer++ = outreg.x.cx;
*pbuffer++ = outreg.x.dx;
}

}

5.2.6. Borland C++ 3.1, 4.0, 4.5

This compiler can use a built-in inline assembler or it can use
commands similar to those described in the previous chapter.
The Inline-Assembler has some differences if compared to that of
Microsoft C. Comments must use the C-syntax, and labels can
only be placed outside of assembly language segments.

The modified example from 7.3.2.1. is shown below:

void DrvInit()
{
installed=0;
 asm {

mov ax, 0200h /*get real mode interrupt vector*/
mov bl, 60h /*interrupt of choice*/
int 31h /*DPMI call */
or cx, dx /*error ? */
jz short nodpmi
mov ax, 9709h /*API indicator*/
mov bx,0 /*initialize FG3xDRV */
int 60h
cmp bx, 9709h /*indicator = bx: success */

HaSoTec FG-30...35 V.4.877-112

 jnz short nodpmi
}

 installed=-1;
 nodpmi: /*label in C-segment */
}

HaSoTec FG-30...35 V.4.877-113

5.3. Microsoft Quick Basic

To read sequential data, Quick Basic requires a small library.
Quick Basic has the command INP(port%). But this command is
of limited use since it can read only 8-bit-data from port addresses
in the range of 0...255.

The following steps implement for all Quick Basic versions from
3.0 to 4.5 a new function called INPW:

Somewhere at the beginning of the program the following
declaration should be included:

DECLARE SUB INPW (BYVAL basis AS INTEGER,
 SEG iword AS INTEGER)

A buffer with 2048 words (16-bit) can be read as shown here:

DIM Buffer% (2048)
DIM INARY%(7), OUTARY% (7);
AXREG%=0
BXREG%=1
CXREG%=2
DXREG%=3

INARY%(AXREG%)=&H9709
INARY%(BXREG%)=64

FOR i%=0 TO 1023
 CALL INT86 (&H60, VARPTR (INARY%(0)), VARPTR(OUTARY%(0)))
 Buffer% (i%*2)=OUTARY%(CXREG%)
 Buffer% (i%*2+1)=OUTARY%(DXREG%)
NEXT i%

The file on the supplied disk named QBAS45.EXE contains the

HaSoTec FG-30...35 V.4.877-114

following files in compressed form:

INPW.ASM- source code for Quick Library
INPW.OBJ- Object code for Quick Library, (for the case that

you don't have an Assembler)
INPW.QLB- Quick Library

As described earlier - Quick Basic has inconsistent library formats.
To be sure that you use a compatible quick library you may follow
the next steps to produce a new library based on your QB45
version:

1. Copy INPW.OBJ into the directory where the Quick Basic
linker LINK.EXE is located,

2. Relink the library with:
link /QU inpw, , , lib\bqlb45.lib

3. Start Quick Basic now using:

qb /l inpw.qlb

For Quick Basic (version 3.0 or higher), the initializing procedure
would look like this:

DIM INREG%(7), OUTREG(7)

AX% = 0 'Index definition for the necessary
BX% = 1 'Registers
CX% = 2
DX% = 3

INREG%(AX%) = &H9709 'Identification

HaSoTec FG-30...35 V.4.877-115

INREG%(BX%) = 0 'Function 0
CALL INT86 (&H60, VARPTR (INREG%(0)), VARPTR
(OUTREG%(0))))

Version 4.5:

Load Quick Basic together with the provided library QB.LIB. In this
case you can use the function CALL INTERRUPT.
The following example uses the function CALL INT86OLD:

$INCLUDE: 'QB.BI'

DIM INREG%(7), OUTREG%(7)
CONST AX=0, BX=1, CX=2, DX=3

INREG%(AX)= &H9709 'Kennung
INREG%(BX)= 0
CALL INT86OLD (&H60, INREG%(), OUTREG%())

To initialize the DPMI interface:

TYPE RegType
ax AS INTEGER
bx AS INTEGER
cx AS INTEGER
dx AS INTEGER
bp AS INTEGER
si AS INTEGER
diI AS INTEGER
flags INTEGER
ds AS INTEGER
es AS INTEGER
END TYPE

HaSoTec FG-30...35 V.4.877-116

RegType rgi, rgo

installed% = 0
rgi.ax = &H200 'Get real mode interrupt vector
rgi.bx = &H60 'interrupt-handle for requested int
CALL INTERRUPT (&H31, rgi, rgo) 'int 31h
IF rgo.cx + rgo.dx = 0 THEN GOTO nodpmi 'Error?
rgi.ax = &H9709 'Check API
rgi.bx = 0 'fkt 0: init
CALL INTERRUPT (&H60, rgi, rgo)
IF rgo.bx <> &H9709 THEN GOTO nodpmi installed% = 1
.... continue with the successfully activated driver
nodpmi:
.... handle error

5.4. Microsoft Visual Basic

It is best not to use this program for programming low-level
functions. It is recommended that you use another language to
write all necessary functions in the form of a DLL. Such DLL's are
then easy to handle under Visual Basic. The provided example
WINMSVB shows how to operate with functions which are located
in a DLL.

5.5. Microsoft Macro-Assembler 6.0
5.6. Microsoft Macro-Assembler 5.1
5.7. Borland Turboassembler

If cmacros.inc is included in your source file with this line:

INCLUDE CMACROS.INC

you can generate procedures for all memory models for all high-
level languages.

HaSoTec FG-30...35 V.4.877-117

An example of a function to activate the DPMI interface and to
initialize the driver would look like this:
;..
; drvini
; Aufruf von C/C++:
; void drvinit (int far * lpinstalled)
;..
cProc drvinit, < PUBLIC,FAR,PASCAL>,<ds>

parmD lpinstalled

cBegin
 lds di,lpinstalled
 pusha
 mov ds:[di], word ptr 0
 push ds
 push di
 mov ax, 0200h ;get real mode interrupt vector
 mov bl, 60h ;requested interrupt handler
 int 31h ;DPMI call
 or cx, dx ;error ?
 jz nodpmi
 mov ax, 9709h ;API indicator
 mov bx,0 ; initialize FG3xDRV
 int 60h
 pop di
 pop ds
 cmp cx, 9709h API indicator in cx: success
 jnz nodpmi
 mov ds:[di], word ptr 1
nodpmi:
 popa
cEnd

HaSoTec FG-30...35 V.4.877-118

5.8. Turbo Pascal for DOS
5.9. Turbo Pascal for Windows

This language has a built-in Inline Assembler. To change the
comments into the syntax used under Pascal, you can use the
example shown in the previous section.

Sequential data sets for FG-30 can be read as follows:

procedure ReadBuffer8Bit (xres,yres,basis : integer;);
var buffer: array[1..xres,1..yres] of integer;
x,y : integer;

begin
for y:=1 to yres+1 do
begin
for x:=1 to xres+1 do

begin
puffer [x,y] := portw [basis];
end

end
.
.
end;

Please note that the variable xres must contain only half of the
x-resolution. Each port access reads 16 - bit - words, each
containing 2 pixels.

HaSoTec FG-30...35 V.4.877-119

VI.
Low-Level programming examples

6.1. Low-level programming in C

Often only one defined image format (with a few adjustments) is required. The
use of direct driver calls may have some advantages, because no other
components are required.
In the start menu there is a list of examples such as that shown above, where
the name indicates which compiler is used and the image format. The name
Msvc-low-level indicates that the Microsoft Visual C compiler (Version 2.0-6.0
and .NET) is used. 555 means that color images with 32K colors, 16 bit/Pixel
are used. Grey means that the images are 8-Bit grey-scale. Interlaced means
that a full frame with a resolution of 768x576 Pixels is used, Interlaced-us is the
same full frame for US-standard- (60Hz-) video sources with 640x480 pixels.
When the term “ interlaced” is not part of the name, resolutions of 384x288
pixels are used and in US-standard 320x240 pixels.
The camera icon is used for the executable files, other symbols point to the
projects files. If a compiler is installed, this project file normally opens the
compiler with the corresponding source code example. You should test your
compiler environment by compiling the unchanged example once and then
comparing the result with the supplied executable file.

Starting with Version 4.81 the FG32...35 examples have an additional version
for Borland C++ Builder 6. There are slight differences between the compilers,
particularly under WinMe/9x. Differences in how the Inline-Assembler handles
the source code lead to instability in the Borland compiler. The Borland
examples have tested code with additional assembler statements so as to
achieve the same stability as the Microsoft examples have. There are additional

HaSoTec FG-30...35 V.4.877-120

examples starting with version 4.81 as shown below. They are also included for
Microsoft Visual C++. The “...low-level-parameters...” examples show how to
handle adjustments for the frame grabber. It is possible to load, save and edit
parameter sets. The “ ...low-level-dual-grabber-555...” example shows how the
Windows XP/2000/NT driver can handle two frame grabber images
simultaneously. The example can handle sources in US-standard or 50Hz
standards with 640x480 pixels and is easy adaptable for other resolutions.

6.1.1. Low-Level programming in C for WinXP/2000/NT

The WM_CREATE procedure allocates memory for a Device Independent
Bitmap (DIB). Since the image size is known, the required amount of memory
can be calculated and the DIB parameters can be initialized.
The Device Driver FG32DRV.SYS is opened and the first initializing driver
functions are called:

FG30DRV (0,&cx,&dx); //init device driver
cx=baseaddr;
dx=0; //enable download
FG30DRV (9,&cx,&dx); //set baseaddr
FG30DRV (8,&cx,&dx); //init grabber

Function 0 must be called each time the program is started. Function 9 sets a
base address. The boards FG30...32 operate in a fixed I/O address space, so
function 9 can be used to switch between cards. To configure FG-30-I, FG-31
and FG32 downloads are required. They are required only once after the system
start, and they take about a second. If function 9 is called with dx not equal zero,
a fast switch is called without configuring the card again.
The frame grabber FG-30-II does not require a download. FG-33, FG34 and
FG35 are plug&play boards, which are configured by the system. They do not
require downloads. If it is known that the address space 300H...30FH is not
used by another device, you can use the following statements instead of
function 9:

cx=300H;
dx=0; //enable download
FG30DRV (9,&cx,&dx); //set baseaddr
FG30DRV (41,&cx,&dx); //get baseaddr
basis=cx;

HaSoTec FG-30...35 V.4.877-121

In this case the driver tries a download on address 300H first. If a frame grabber
FG-32 is present, it will be configured and function 41 will report the base
address 300H. If no FG-32 is present, the driver checks for FG-33, FG34 or
FG35. If at least one of these frame grabbers is installed, the driver activates
the first device found and so function 41 will report the correct base address for
FG32,33,34 or 35, respectively. This makes it possible to write a program that
will work without modification, if at least one FG32...35 is installed. Low-level
examples for FG32...35 have the same source code installed using this feature.

Function 8 initializes video parameters. This is required at least one time after a
system start. It is possible to change XRAM-values before function 8 is
executed. If these values are later changed, use this function to activate them
again.

The acquisition process is controlled by functions 50, 51, 52 and 53. “Acquisition
process” means here the process of digitizing the video signal and taking
images and image parts into the frame grabbers built-in dual port memory. To
get image data, you must follow a data transfer procedure.

Functions 50, 51 and 52 select a rectangular image part and the data format. To
get the full resolution you must work in interlaced Mode (1:1).
1:2 down-scaled images are based on image fields, and it makes sense to
handle this case with a separate example. For each TV standard this results in
two basic grids: for 50Hz this is 768x576 and 384x288 and for 60 Hz it is
640x480 and 320x240.
Inside this basic grid, a rectangle can be defined to get only data found inside of
it. Only this data is taken into the built-in memory and therefore only this data is
transferred, which means that the data transfer time is reduced. With this
functionality a higher quality is possible than that achieved using a hardware
scaler. The following example tries to explain why the scaling functions of the
FG-30-II, FG33...35 chipsets are not used. For example, a target image size of
280x200 pixels is to be acquired. To solve this, a basic grid of 384x288 (50Hz)
or 320x240 (60Hz) is used and a rectangular image part of 280x200 is adjusted.
Instead of scaling down from 384x288 (or 320x240) to 280x200, the camera can
be brought closer to the object, so that only the relevant objects are contained in
the cropped window.

If Interlaced mode is used, the examples use function 57 to start grabbing in an
odd field, so as to get the fields in the expected order.

The image data transfer functions are described in section 1.1 of this chapter.

HaSoTec FG-30...35 V.4.877-122

Image display is realized with a Windows API function SetDIBBitsToDevice.
Using the functions of DirectX or DrawDibDraw a faster display is possible,
which is also scalable.
Two more examples, msvc-low-level-parameters and msvc-low-level-
parameters-us, show a simple live-video display realized by a timer function. It
allows you to load, modify and save video parameters simultaneously.

6.1.2. Low-Level programming in C for WinMe/98/95

All examples described in the previous section are available under WinMe/98/95
as well. On these platforms the device driver must not be opened.
All int- 60h- calls are explained in section 5.1.
The image data transfer is made directly with the help of block transfer
commands, such as insd (32-bit) and insw (16-bit-FG30). Such commands allow
the transfer of a predefined number of DWORD (insw:WORDS).
For 1:2 image data formats, a single command will transfer the image. For
interlaced formats the transfer is more complex. This will be explained using the
example “low-level-interlaced-555":
Data transfer from dual-port memory follows the same order as data is
presented in the video signal. The odd field comes first and is transferred with:

mov edi,pimg
mov ecx,288

odd00: push ecx
mov ecx,768/2
rep insd ;fill buffer with image data
add edi,768*2
pop ecx
loop odd00

The frame buffer is skipped for every second line. Rep insd transfers in each
cycle 384 Dwords, which are 768 16-bit-pixels. The add command skips 384
Dwords, which is equal the space of one line. This cycle is repeated 288 times.
Between video fields the hardware digitizes two more lines. These lines must be
read blind so as to reach the beginning of the next field:

mov ax,9709h
mov bx,116
int 60h ;drvgetimode
and cx,cx

HaSoTec FG-30...35 V.4.877-123

jz rb01
readblind: mov bx,384 ;384 dwords=1
zeilerb00: in eax,dx

dec bx
jnz rb00
dec cx
jnz readblind

rb01:
Function 116 returns the value 2 by default. There are several video signals for
which another value (settable by function 115) results in the correct placement
of the even field. It makes the most sense to use values in the range of 0...4.

The second field is now transferred:
mov edi,pimg
mov ecx,288

even00: push ecx
mov ecx,768/2
add edi,768*2
rep insd ;fill buffer with image data
pop ecx
loop even00

The order of insd and add edi,384 is reversed, so now the lines skipped in the
first loop are filled.
As in the previous examples for Windows XP/2000/NT, a simple display of the
image is implemented using SetDibBITsToDevice. With small changes, the
example is useable for Windows 3.x. In this case, the order of lines must be
placed into the DIB in reverse order and the negative sign of
pbi->bmiHeader.biHeight must be removed. Because 16-Bit-data DIBs are not
implemented in Win3.x, the DIB format must be changed to 24 bits/pixel.

HaSoTec FG-30...35 V.4.877-124

 6.2. Low-Level programming in Pascal

The examples shown in section 6.1.1. are installed for Borland Delphi as well.
The examples are compiled with Delphi 6 but should work under Delphi 5 too.
For older Delphi versions the projects must be redefined and some displaying

functions have to be changed. The frame grabber functions do not require any
changes.

